996 resultados para Radial Focus visualization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

,Radial+Focus,;Radial+Focus;,Radial+Focus,,

Relevância:

80.00% 80.00%

Publicador:

Resumo:

(1) (2) (3) Radial+Focus (4)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Technological advances have led to an influx of affordable hardware that supports sensing, computation and communication. This hardware is increasingly deployed in public and private spaces, tracking and aggregating a wealth of real-time environmental data. Although these technologies are the focus of several research areas, there is a lack of research dealing with the problem of making these capabilities accessible to everyday users. This thesis represents a first step towards developing systems that will allow users to leverage the available infrastructure and create custom tailored solutions. It explores how this notion can be utilized in the context of energy monitoring to improve conventional approaches. The project adopted a user-centered design process to inform the development of a flexible system for real-time data stream composition and visualization. This system features an extensible architecture and defines a unified API for heterogeneous data streams. Rather than displaying the data in a predetermined fashion, it makes this information available as building blocks that can be combined and shared. It is based on the insight that individual users have diverse information needs and presentation preferences. Therefore, it allows users to compose rich information displays, incorporating personally relevant data from an extensive information ecosystem. The prototype was evaluated in an exploratory study to observe its natural use in a real-world setting, gathering empirical usage statistics and conducting semi-structured interviews. The results show that a high degree of customization does not warrant sustained usage. Other factors were identified, yielding recommendations for increasing the impact on energy consumption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we explore a novel idea of using high dynamic range (HDR) technology for uncertainty visualization. We focus on scalar volumetric data sets where every data point is associated with scalar uncertainty. We design a transfer function that maps each data point to a color in HDR space. The luminance component of the color is exploited to capture uncertainty. We modify existing tone mapping techniques and suitably integrate them with volume ray casting to obtain a low dynamic range (LDR) image. The resulting image is displayed on a conventional 8-bits-per-channel display device. The usage of HDR mapping reveals fine details in uncertainty distribution and enables the users to interactively study the data in the context of corresponding uncertainty information. We demonstrate the utility of our method and evaluate the results using data sets from ocean modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mapping and geospatial analysis of benthic environments are multidisciplinary tasks that have become more accessible in recent years because of advances in technology and cost reductions in survey systems. The complex relationships that exist among physical, biological, and chemical seafloor components require advanced, integrated analysis techniques to enable scientists and others to visualize patterns and, in so doing, allow inferences to be made about benthic processes. Effective mapping, analysis, and visualization of marine habitats are particularly important because the subtidal seafloor environment is not readily viewed directly by eye. Research in benthic environments relies heavily, therefore, on remote sensing techniques to collect effective data. Because many benthic scientists are not mapping professionals, they may not adequately consider the links between data collection, data analysis, and data visualization. Projects often start with clear goals, but may be hampered by the technical details and skills required for maintaining data quality through the entire process from collection through analysis and presentation. The lack of technical understanding of the entire data handling process can represent a significant impediment to success. While many benthic mapping efforts have detailed their methodology as it relates to the overall scientific goals of a project, only a few published papers and reports focus on the analysis and visualization components (Paton et al. 1997, Weihe et al. 1999, Basu and Saxena 1999, Bruce et al. 1997). In particular, the benthic mapping literature often briefly describes data collection and analysis methods, but fails to provide sufficiently detailed explanation of particular analysis techniques or display methodologies so that others can employ them. In general, such techniques are in large part guided by the data acquisition methods, which can include both aerial and water-based remote sensing methods to map the seafloor without physical disturbance, as well as physical sampling methodologies (e.g., grab or core sampling). The terms benthic mapping and benthic habitat mapping are often used synonymously to describe seafloor mapping conducted for the purpose of benthic habitat identification. There is a subtle yet important difference, however, between general benthic mapping and benthic habitat mapping. The distinction is important because it dictates the sequential analysis and visualization techniques that are employed following data collection. In this paper general seafloor mapping for identification of regional geologic features and morphology is defined as benthic mapping. Benthic habitat mapping incorporates the regional scale geologic information but also includes higher resolution surveys and analysis of biological communities to identify the biological habitats. In addition, this paper adopts the definition of habitats established by Kostylev et al. (2001) as a spatially defined area where the physical, chemical, and biological environment is distinctly different from the surrounding environment. (PDF contains 31 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new set of continuous superresolution filters is proposed which exhibits a radial superresolution performance with an extended depth of focus in an optical system by properly choosing the design parameters. Numerical simulation results of the performance parameters of the superresolution gain, the radial central core size, the Strehl ratio, the side-lobe factor and the depth of focus with different design parameters for the optimized patterns are displayed. We also give a design example for this kind of filter characterized by a birefringent element inserted between two parallel polarizers. This kind of filter would be useful in fields such as optical data storage systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

<p>The current power grid is on the cusp of modernization due to the emergence of distributed generation and controllable loads, as well as renewable energy. On one hand, distributed and renewable generation is volatile and difficult to dispatch. On the other hand, controllable loads provide significant potential for compensating for the uncertainties. In a future grid where there are thousands or millions of controllable loads and a large portion of the generation comes from volatile sources like wind and solar, distributed control that shifts or reduces the power consumption of electric loads in a reliable and economic way would be highly valuable.</p> <p>Load control needs to be conducted with network awareness. Otherwise, voltage violations and overloading of circuit devices are likely. To model these effects, network power flows and voltages have to be considered explicitly. However, the physical laws that determine power flows and voltages are nonlinear. Furthermore, while distributed generation and controllable loads are mostly located in distribution networks that are multiphase and radial, most of the power flow studies focus on single-phase networks.</p> <p>This thesis focuses on distributed load control in multiphase radial distribution networks. In particular, we first study distributed load control without considering network constraints, and then consider network-aware distributed load control.</p> <p>Distributed implementation of load control is the main challenge if network constraints can be ignored. In this case, we first ignore the uncertainties in renewable generation and load arrivals, and propose a distributed load control algorithm, Algorithm 1, that optimally schedules the deferrable loads to shape the net electricity demand. Deferrable loads refer to loads whose total energy consumption is fixed, but energy usage can be shifted over time in response to network conditions. Algorithm 1 is a distributed gradient decent algorithm, and empirically converges to optimal deferrable load schedules within 15 iterations.</p> <p>We then extend Algorithm 1 to a real-time setup where deferrable loads arrive over time, and only imprecise predictions about future renewable generation and load are available at the time of decision making. The real-time algorithm Algorithm 2 is based on model-predictive control: Algorithm 2 uses updated predictions on renewable generation as the true values, and computes a pseudo load to simulate future deferrable load. The pseudo load consumes 0 power at the current time step, and its total energy consumption equals the expectation of future deferrable load total energy request.</p> <p>Network constraints, e.g., transformer loading constraints and voltage regulation constraints, bring significant challenge to the load control problem since power flows and voltages are governed by nonlinear physical laws. Remarkably, distribution networks are usually multiphase and radial. Two approaches are explored to overcome this challenge: one based on convex relaxation and the other that seeks a locally optimal load schedule.</p> <p>To explore the convex relaxation approach, a novel but equivalent power flow model, the branch flow model, is developed, and a semidefinite programming relaxation, called BFM-SDP, is obtained using the branch flow model. BFM-SDP is mathematically equivalent to a standard convex relaxation proposed in the literature, but numerically is much more stable. Empirical studies show that BFM-SDP is numerically exact for the IEEE 13-, 34-, 37-, 123-bus networks and a real-world 2065-bus network, while the standard convex relaxation is numerically exact for only two of these networks.</p> <p>Theoretical guarantees on the exactness of convex relaxations are provided for two types of networks: single-phase radial alternative-current (AC) networks, and single-phase mesh direct-current (DC) networks. In particular, for single-phase radial AC networks, we prove that a second-order cone program (SOCP) relaxation is exact if voltage upper bounds are not binding; we also modify the optimal load control problem so that its SOCP relaxation is always exact. For single-phase mesh DC networks, we prove that an SOCP relaxation is exact if 1) voltage upper bounds are not binding, or 2) voltage upper bounds are uniform and power injection lower bounds are strictly negative; we also modify the optimal load control problem so that its SOCP relaxation is always exact.</p> <p>To seek a locally optimal load schedule, a distributed gradient-decent algorithm, Algorithm 9, is proposed. The suboptimality gap of the algorithm is rigorously characterized and close to 0 for practical networks. Furthermore, unlike the convex relaxation approach, Algorithm 9 ensures a feasible solution. The gradients used in Algorithm 9 are estimated based on a linear approximation of the power flow, which is derived with the following assumptions: 1) line losses are negligible; and 2) voltages are reasonably balanced. Both assumptions are satisfied in practical distribution networks. Empirical results show that Algorithm 9 obtains 70+ times speed up over the convex relaxation approach, at the cost of a suboptimality within numerical precision.</p>

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analytical expression of a radial laser array for flat-topped beam is derived based on the generalized Collins formula. The intensity distribution of the resulting beam focused by a lens at the focus plane, for phase-locked and nonphase-locked cases, is studied numerically. The effect of the Fresnel number and normalized radius on intensity distribution for phase-locked and nonphase-locked cases is also presented. It is found that intensity distribution for nonphase-locked case is much less sensible to the Fresnel number and normalized radius than that of phase-locked case. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes an experimental investigation of tip clearance flow in a radial inflow turbine. Flow visualization and static pressure measurements were performed. These were combined with hot-wire traverses into the tip gap. The experimental data indicates that the tip clearance flow in a radial turbine can be divided into three regions. The first region is located at the rotor inlet, where the influence of relative casing motion dominates the flow over the tip. The second region is located towards midchord, where the effect of relative casing motion is weakened. Finally a third region exists in the exducer, where the effect of relative casing motion becomes small and the leakage flow resembles the tip flow behaviour in an axial turbine. Integration of the velocity profiles showed that there is little tip leakage in the first part of the rotor because of the effect of scraping. It was found that the bulk of tip leakage flow in a radial turbine passes through the exducer. The mass flow rate, measured at four chordwise positions, was compared with a standard axial turbine tip leakage model. The result revealed the need for a model suited to radial turbines. The hot-wire measurements also indicated a higher tip gap loss in the exducer of the radial turbine. This explains why the stage efficiency of a radial inflow turbine is more affected by increasing the radial clearance than by increasing the axial clearance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Focus+Context,,Focus+Context.,,;,,,,.,Focus+Context.,.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a technique for simultaneous focusing and energy selection of high-current, mega-electron volt proton beams With the use of radial, transient electric fields (107 to 1010 volts per meter) triggered on the inner walls of a hollow microcylinder by an intense subpicosecond laser pulse. Because of the transient nature of the focusing fields, the proposed method allows selection of a desired range out of the spectrum of the polyenergetic proton beam. This technique addresses current drawbacks of laser-accelerated proton beams, such as their broad spectrum and divergence at the source.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The radial vaneless diffuser, though comparatively simple in terms of geometry, poses a significant challenge in obtaining an accurate 1-D based performance prediction due to the swirling, unsteady and distorted nature of the flow field. Turbocharger compressors specifically, with the ever increasing focus on achieving a wide operating range, have been recognised to operate with significant regions of spanwise separated flow, particularly at off-design conditions. <br/><br/>Using a combination of single passage Computational Fluid Dynamics (CFD) simulations and extensive gas stand test data for three geometries, the current study aims to evaluate the onset and impact of spanwise aerodynamic blockage in radial vaneless diffusers, and how the extent of the blocked region throughout the diffuser varies with both geometry and operating condition. Having analysed the governing performance parameters and flow phenomena, a novel 1-D modelling method is presented and compared to an existing baseline method as well as test data to quantify the improvement in prediction accuracy achieved. <br/>

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information Visualization is gradually emerging to assist the representation and comprehension of large datasets about Higher Education Institutions, making the data more easily understood. The importance of gaining insights and knowledge regarding higher education institutions is little disputed. Within this knowledge, the emerging and urging area in need of a systematic understanding is the use of communication technologies, area that is having a transformative impact on educational practices worldwide. This study focused on the need to visually represent a dataset about how Portuguese Public Higher Education Institutions are using Communication Technologies as a support to teaching and learning processes. Project TRACER identified this need, regarding the Portuguese public higher education context, and carried out a national data collection. This study was developed within project TRACER, and worked with the dataset collected in order to conceptualize an information visualization tool U-TRACER. The main goals of this study related to: conceptualization of the information visualization tool U-TRACER, to represent the data collected by project TRACER; understand higher education decision makers perception of usefulness regarding the tool. The goals allowed us to contextualize the phenomenon of information visualization tools regarding higher education data, realizing the existing trends. The research undertaken was of qualitative nature, and followed the method of case study with four moments of data collection.The first moment regarded the conceptualization of the U-TRACER, with two focus group sessions with Higher Education professionals, with the aim of defining the interaction features the U-TRACER should offer. The second data collection moment involved the proposal of the graphical displays that would represent the dataset, which reading effectiveness was tested by end-users. The third moment involved the development of a usability test to the UTRACER performed by higher education professionals and which resulted in the proposal of improvements to the final prototype of the tool. The fourth moment of data collection involved conducting exploratory, semi-structured interviews, to the institutional decision makers regarding their perceived usefulness of the U-TRACER. We consider that the results of this study contribute towards two moments of reflection. The challenges of involving end-users in the conceptualization of an information visualization tool; the relevance of effective visual displays for an effective communication of the data and information. The second relates to the reflection about how the higher education decision makers, stakeholders of the U-TRACER tool, perceive usefulness of the tool, both for communicating their institutions data and for benchmarking exercises, as well as a support for decision processes. Also to reflect on the main concerns about opening up data about higher education institutions in a global market.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Several guidelines recommend computed tomography scans for populations with high-risk for lung cancer. The number of individuals evaluated for peripheral pulmonary lesions (PPL) will probably increase, and with it non-surgical biopsies. Associating a guidance method with a target confirmation technique has been shown to achieve the highest diagnostic yield, but the utility of bronchoscopy with radial probe endobronchial ultrasound using fluoroscopy as guidance without a guide sheath has not been reported. METHODS: We conducted a retrospective analysis of bronchoscopy with radial probe endobronchial ultrasound using fluoroscopy procedures for the investigation of PPL performed by experienced bronchoscopists with no specific previous training in this particular technique. Operator learning curves and radiological predictors were assessed for all consecutive patients examined during the first year of application of the technique. RESULTS: Fifty-one PPL were investigated. Diagnostic yield and visualization yield were 72.5 and 82.3% respectively. The diagnostic yield was 64.0% for PPL &#8804;20mm, and 80.8% for PPL>20mm. No false-positive results were recorded. The learning curve of all diagnostic tools showed a DY of 72.7% for the first sub-group of patients, 81.8% for the second, 72.7% for the third, and 81.8% for the last. CONCLUSION: Bronchoscopy with radial probe endobronchial ultrasound using fluoroscopy as guidance is safe and simple to perform, even without specific prior training, and diagnostic yield is high for PPL>and &#8804;20mm. Based on these findings, this method could be introduced as a first-line procedure for the investigation of PPL, particularly in centers with limited resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enhanced reality visualization is the process of enhancing an image by adding to it information which is not present in the original image. A wide variety of information can be added to an image ranging from hidden lines or surfaces to textual or iconic data about a particular part of the image. Enhanced reality visualization is particularly well suited to neurosurgery. By rendering brain structures which are not visible, at the correct location in an image of a patient's head, the surgeon is essentially provided with X-ray vision. He can visualize the spatial relationship between brain structures before he performs a craniotomy and during the surgery he can see what's under the next layer before he cuts through. Given a video image of the patient and a three dimensional model of the patient's brain the problem enhanced reality visualization faces is to render the model from the correct viewpoint and overlay it on the original image. The relationship between the coordinate frames of the patient, the patient's internal anatomy scans and the image plane of the camera observing the patient must be established. This problem is closely related to the camera calibration problem. This report presents a new approach to finding this relationship and develops a system for performing enhanced reality visualization in a surgical environment. Immediately prior to surgery a few circular fiducials are placed near the surgical site. An initial registration of video and internal data is performed using a laser scanner. Following this, our method is fully automatic, runs in nearly real-time, is accurate to within a pixel, allows both patient and camera motion, automatically corrects for changes to the internal camera parameters (focal length, focus, aperture, etc.) and requires only a single image.