1000 resultados para Rabin method
Resumo:
Esta pesquisa foi realizada com a intenção de motivar o estudo da criptografia, mostrando que a matemática e a comunicação estão presentes em diversos momentos, tanto no passado quanto no presente. Este trabalho mostra a origem da criptoanálise e toda a sua evolução dando ênfase nos mecanismos de codificação e decodificação através de exemplos práticos. Além disso, alguns métodos criptográficos são destacados como a cifra de substituição monoalfabética, a cifra de Vigenère, a criptografia RSA que é o método mais conhecido de criptografia de chave pública, as cifras de Hill, o método das transformações lineares e o método de Rabin, devido a sua grande importância para a evolução de sistemas computacionais e assinaturas digitais entre outros. Por fim, mostra-se a importância e a necessidade dos recursos criptográficos nos dias de hoje, na tentativa de impedir que hackers e pessoas que fazem mau uso do conhecimento matemático possam causar danos a sociedade, seja por uma simples mensagem ou até mesmo através de situações mais imprudentes como as transações bancárias indevidas
Resumo:
Fleck and Johnson (Int. J. Mech. Sci. 29 (1987) 507) and Fleck et al. (Proc. Inst. Mech. Eng. 206 (1992) 119) have developed foil rolling models which allow for large deformations in the roll profile, including the possibility that the rolls flatten completely. However, these models require computationally expensive iterative solution techniques. A new approach to the approximate solution of the Fleck et al. (1992) Influence Function Model has been developed using both analytic and approximation techniques. The numerical difficulties arising from solving an integral equation in the flattened region have been reduced by applying an Inverse Hilbert Transform to get an analytic expression for the pressure. The method described in this paper is applicable to cases where there is or there is not a flat region.
Resumo:
In this paper, a singularly perturbed ordinary differential equation with non-smooth data is considered. The numerical method is generated by means of a Petrov-Galerkin finite element method with the piecewise-exponential test function and the piecewise-linear trial function. At the discontinuous point of the coefficient, a special technique is used. The method is shown to be first-order accurate and singular perturbation parameter uniform convergence. Finally, numerical results are presented, which are in agreement with theoretical results.