990 resultados para RUBBER BLENDS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polypropylene and natural rubber blends with multiwalled carbon nanotube (PP/NR + MWCNT nanocomposites) were prepared by melt mixing. The melt rheological behaviour of neat PP and PP/NR blends filled with different loadings (1, 3, 5, 7 wt%) of MWCNT was studied. The effect of PP/NR blends (with compositions, 80/20,50/50, 20/80 by wt) on the rheological percolation threshold was investigated. It was found that blending PP with NR (80/20 and 50/50 composition) reduced the rheological percolation threshold from 5 wt% to 3 wt% MWCNT. The melt rheological behaviour of the MWCNT filled PP/NR blends was correlated with the morphology observations from high resolution transmission electron microscopic (HRTEM) images. In predicting the thermodynamically favoured location of MWCNT in PP/NR blend, the specific interaction of phospholipids in NR phase with MWCNTs was considered quantitatively. The MWCNTs were selectively localised in the NR phase. The percolation mechanism in MWCNT filled PP/NR blends was discussed and for each blend composition, the percolation mechanism was found to be different. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blends of styrene butadiene rubber (SBR) with maleic anhydride grafted whole tire reclaim (MA-g-WTR) have been prepared and the cure and mechanical properties have been studied with respect to the reclaim content. The grafting was carried out in the presence of dicumylperoxide (DCP) in a Brabender Plasticorder at 150'C. The presence of anhydride group on the WTR was confirmed by infrared spectrometry (IR) study. The properties were compared with those of the blends containing unmodified WTR. Though the cure time was marginally higher, the mechanical properties of the blends containing grafted WTR were better than that of the unmodified blends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blends of Acrylonitrile rubber with Maleic anhydride grafted Whole Tyre Reclaim WTR (MA-g-WTR) have been prepared and the cure and mechanical properties have been studied with respect to reclaim content. Control compounds containing unmodified WTR were also prepared for comparison. Grafting was confirmed by IR studies. Blends containing grafted WTR showed higher minimum torque and (max-min) torque. They also showed longer cure time, scorch time and lower cure rate. Grafting of the WTR with maleic anhydride also resulted in the improved tensile strength, abrasion resistance, compression set and resilience. However, the heat build up under dynamic loading was marginally higher for the blends containing grafted reclaimed rubber.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cure characteristics and mechanical properties of short nylon fiber reinforced acrylonitrile butadiene rubber-reclaimed rubber composites were studied. Minimum torque, (maximum-minimum) torque and cure rate increased with fiber concentration. Scorch time and cure time decreased by the addition of fibers. Properties like tensile strength, tear strength, elongation at break, abrasion loss and heat build up were studied in both orientations of fibers. Tensile and tear properties were enhanced by the addition of fibers and were higher in the longitudinal direction. Heat build up increased with fiber concentration and were higher in the longitudinal direction. Abrasion resistance was improved in presence of short fibers and was higher in the longitudinal direction. Resilience increased on the introduction of fibers. Compression set was higher for blends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cure characteristics and mechanical properties of acrylonitrile butadiene rubber/reclaimed rubber blends were studied. Minimum torque, (ma)dmum -minimum) torque, scorch time, cure time and cure rate decreased in presence of reclaimed rul3ber. Tensile strength, elongation at break and compression set increased'with increase in reclaim content. Resilience and abrasion resistance decreased with reclaim loading. Heat build up was higher for the blends. The ageing resistance of the blends was inferior to that of the gum compound.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cure characteristics and mechanical properties of styrene butadiene rubber reclaimed rubber blends were studied. The blends showed improved processability, as indicated by the minimum torque values. Cure characteristics like minimum torque, (maximum-minimum) torque, cure time and cure rate decreased in the presence of reclaimed rubber. Tensile strength, tear strength, elongation at break were higher for blends. Resilience decreased with reclaim content. Compression set and abrasion loss were higher in the blends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermoplastic starch/natural rubber polymer blends were prepared using directly natural latex and cornstarch. The blends were prepared in an intensive batch mixer at 150 degreesC, with natural rubber content varying from 2.5 to 20%. The blends were characterised by mechanical analysis (stress-strain) and by scanning electron microscopy. The results revealed a reduction in the modulus and in tensile strength, becoming the blends less brittle than thermoplastic starch alone. Phase separation was observed in some compositions and was dependent on rubber and on plasticiser content (glycerol). Increasing plasticiser content made possible the addition of higher amounts of rubber. The addition of rubber was, however, limited by phase separation the appearance of which depended on the glycerol content. Scanning electron microscopy showed a good dispersion of the natural rubber in the continuos phase of thermoplastic starch matrix. (C) 2003 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work poly(hydroxybutyrate/poly(vinyl butyral)- co-(vinyl alcohol)-co(vinyl acetate) (or ethylene propylene diene monomer rubber) blends were prepared by conventional processing techniques (extrusion and injection moulding). A droplet type morphology was obtained for P(3HB)/PVB blends whereas P(3HB)/EPDM blends presented some extent of co-continuous morphology. In addition, rubbery domains were much smaller in the case of PVB. These differences in morphology are discussed taking into account solubility parameters and rheological behaviours of each component. For both blends, the increase of elastomer ratio led to a decrease of Young's modulus but an increase in elongation at break and impact strength. The latter increased more in the case of P(3HB)/EPDM blends although the rubbery domains were larger. These results are explained in the light of the glass transition of the rubber and the presence of plasticizer in the case of PVB. The addition of elastomer also resulted in an increase of P(3HB) biodegradation rate, especially in the case of EPDM. It is assumed that, in this case, the size and morphology of the rubbery domains induce a geometrical modification of the erosion front which leads to an increase of the interface between P(3HB) phase and the degradation medium and consequently to an apparently faster biodegradation kinetics of PHB/rubber blends. Copyright (C) 2011 Society of Chemical Industry

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Films containing different volumes of latex of natural rubber (NR) in a fixed mass of poly (vinylidene fluoride) (PVDF) powder were fabricated by compressing under annealing a mixture of both materials without using any solvent. This is an important issue keeping in mind that these films have to be used in the future as biomaterials in different applications once the solvents that are used to dissolve the PVDF become toxic to human. The films with different percentage of latex in PVDF were characterized using microRaman scattering and Fourier transform infrared absorption (FTIR) spectroscopies, thermomechanical techniques using thermogravimetry (TG), differential scanning calorimetry (DSC), dynamical-mechanical analysis (DMA) and scanning electron microscopy (SEM). The results showed that the latex of NR and PVDF do not interact chemically, leading to the formation of a polymeric blend with high thermal stability and mechanical properties suitable for applications involving bone (prostheses, for instance). Besides, the results recorded using the micro-Raman technique revealed that for a fixed amount of PVDF the higher the amount of latex in the blend, the better the miscibility between both materials. Copyright (c) 2005 John Wiley & Sons, Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Styrene-b-(ethylene-co-1-butene)-b-styrene (SEBS) triblock copolymer functionalized with epsilon-caprolactam blocked allyl (3-isocyanate-4-tolyl) carbamate (SEBS-g-BTAI) was used to toughen polyamide 6 (PA6) via reactive blending. Compared to the PA6/SEBS blends, mechanical properties such as tensile strength, Young's modulus, especially Izod notched strength of PA6/SEBS-g-BTAI blends were improved distinctly. Both theological and FTIR results indicated a new copolymer formed by the reaction of end groups of PA6 and isocyanate group regenerated in the backbone of SEBS-g-BTAI. Smaller dispersed particle sizes with narrower distribution were found in PA6/SEBS-g-BTAI blends, via field emitted scanning electron microscopy (FESEM). The core-shell structures with PS core and PEB shell were also observed in the PA6/SEBS-g-BTAI blends via transmission electron microscopy (TEM), which might improve the toughening ability of the rubber particles.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To study the brittle-ductile transition (BDT) of polypropylene (PP)/ethylene-propylene-diene monomer (EPDM) blends induced by size, temperature, and time, the toughness of the PP/EPDM blends was investigated over wide ranges of EPDM content, temperature, and strain rate. The toughness of the blends was determined from the tensile fracture energy of the side-edge notched samples. The concept of interparticle distance (ID) was introduced into this study to probe the size effect on the BDT of PP/EPDM blends, whereas the effect of time corresponded to that of strain rate. The BDT induced by size, temperature, and time was observed in the fracture energy versus ID, temperature, and strain rate. The critical BDT temperatures for various EPDM contents at different initial strain rates were obtained from these transitions. The critical interparticle distance (IDc) increased nonlinearly with increasing temperature, and when the initial strain rate was lower, the IDc was larger. Moreover, the variation of the reciprocal of the initial strain rate with the reciprocal of temperature followed different straight lines for various EPDM contents. These straight lines were with the same slope.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effects of three triblock copolymers of poly [styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) of different molecular weight (MW) on the morphology, tensile strength and thermal behavior of isotactic polypropylene/syndiotactic polystyrene (iPP/sPS, 80/20) blend are investigated. Morphology observation shows that both the medium MW and the lower MW SEBS are more effective than the higher MW SEBS in compatibilizing the blends. Tensile tests revels both the medium and low MW compatibilizer lead to a significant improvement in tensile strength, while the higher MW compatibilizer is efficient in increasing the elongation at break of the blends. The localization of compatibilizers in the blends is observed by mean of SEM and the correlation between the distribution of the compatibilizers and mechanical properties of the blends is evaluated. The mechanical properties of the iPP/sPS blends depend on not only the interfacial activity of the compatibilizers but also the distribution of the compatibilizer in the blend. Addition of the compatibilizers to the blend causes a remarkable decrease in the magnitude of the crystallization peak of sPS at its usual T-c. Vicat softening points demonstrate that the heat resistance of iPP/sPS blend is much higher than that of the pure iPP.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this article, ethylene-propylene-diene-rubber (EPDM) was epoxidized with an in situ formed performic acid to prepare epoxided EPDM (eEPDM). The eEPDM together with the introduction of PP-g-AA was used to compatibilize PP/EPDM blends in a Haake mixer. FTIR results showed that the EPDM had been epoxidized. The reaction between epoxy groups in the eEPDM and carboxylic acid groups in PP-g-AA had taken place, and PP-g-EPDM copolymers were formed in situ. Torque test results showed that the actual temperature and torque values for the compatibilized blends were higher than that of the uncompatibilized blends. Scanning electron microscopy (SEM) observation showed that the dispersed phase domain size of compatibilized blends and the uncompatibilized blends were 0.5 and 1.5 mu m, respectively. The eEPDM together with the introduction of PP-g-AA could compatibilize PP/EPDM blends effectively. Notched Izod impact tests showed that the formation of PP-g-EPDM copolymer improved the impact strength and yielded a tougher PP blend.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The toughness of polypropylene (PP)/ethylene-propylene-diene monomer (EPDM) blends was studied over wide ranges of EPDM content and temperature. In order to study the effect of notch radius (R), the toughness of the samples with different notch radii was determined from Izod impact test. The results showed that both toughness and brittle-ductile transition (BDT) of the blends were a function of R, respectively. At test temperatures, the toughness tended to decrease with increasing 1/R for various PP/EPDM blends. Moreover, the brittle-ductile transition temperature (T-BT) increased with increasing 1/R, whereas the critical interparticle distance (IDc) reduced with increasing 1/R. Finally, it was found that the different curves of IDc versus test temperature (T) for different notches reduced down to a master curve if plotting IDc versus T-BT(m)-T, where T-BT(m) was the T-BT of PP itself for a given notch, indicating that T-BT(m)-T was a more universal parameter that determined the BDT of polymers. This conclusion was well in agreement with the theoretical prediction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effects of thermally crosslinkable polymerization of monomer reactant-polyimide (POI) on the miscibility, morphology, and crystallization of partially miscible poly(ether sulfone) (PES)/poly(phenylene sulfide) (PPS) blends were investigated with differential scanning calorimetry and scanning electron microscopy. The addition of POI led to a significant reduction in the size of PPS particles, and the interfacial tension between PPS and crosslinked POI was smaller than that between PES and crosslinked POI. During melt blending, crosslinking and grafting reactions of POI with PES and PPS homopolymers were detected; however, the reaction activity of POI with PPS was much higher than that with PES. The crosslinking and grafting reactions were developed further when blends were annealed at higher temperatures. Moreover, POI was an effective nucleation agent of the crystallization of PPS, but crosslinking and grafting hindered the crystallization of PPS. The final effect of POI on the crystallinity of the PPS phase was determined by competition between the two contradictory factors. The crosslinking and grafting reactions between the two components was controlled by the dosage of POI in the blends, the premixing sequence of POI with the two components, the annealing time, and the temperature.