132 resultados para RSM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY : Two-component systems are key mediators implicated in the response of numerous bacteria to a wide range of signals and stimuli. The two-component system comprised of the sensor kinase GacS and the response regulator GacA is broadly distributed among γ-proteobacteria bacteria and fulfils diverse functions such as regulation of carbon storage and expression of virulence. In Pseudomonas fluorescens, a soil bacterium which protects plants from root-pathogenic fungi and nematodes, the GacS/GacA two-component system has been shown to be essential for the production of secondary metabolites and exoenzymes required for the biocontrol activity of the bacterium. The regulatory cascade initiated by GacS/GacA consists of two translational repressor proteins, RsmA and RsmE, as well as three GacAcontrolled small regulatory RNAs RsmX, RsmY and RsmZ, which titrate RsmA and RsmE to allow the expression of biocontrol factors. Genetic analysis revealed that two additional sensor kinases termed RetS and Lads were involved as negative and positive control elements, respectively, in the Gac/Rsm pathway in P. fluoresens CHAO. Furthermore, it could be proposed that RetS and Lads interact with GacS, thereby modulating the expression of antibiotic compounds and hydrogen cyanide, as well as the rpoS gene encoding the stress and stationary phase sigma factor σ. Temperature was found to be an important environmental cue that influences the Gac/Rsm network. Indeed, the production of antibiotic compounds and hydrogen cyanide was reduced at 35°C, by comparison with the production at 30°C. RetS was identified to be involved in this temperature control. The small RNA RsmY was confirmed to be positively regulated by GacA and RsmA/RsmE. Two essential regions were identified in the rsmY promoter by mutational analysis, the upstream activating sequence (UAS) and the linker sequence. Although direct experimental evidence is still missing, several observations suggest that GacA may bind to the UAS, whereas the linker region would be recognized by intermediate RsmA/RsmEdependent repressors and/or activators. In conclusion, this work has revealed new elements contributing to the function of the signal transduction mechanisms in the Gac/Rsm pathway. RESUME : Les systèmes ä deux composants sont des mécanismes d'une importance notoire que beaucoup de bactéries utilisent pour faire face et répondre aux stimuli environnementaux. Le système à deux composants comprenant le senseur GacS et le régulateur de réponse GacA est très répandu chez les γ-protéobactéries et remplit des fonctions aussi diverses que la régulation du stockage de carbone ou l'expression de la virulence. Chez Pseudomonas fluorescens CHAO, une bactérie du sol qui protège les racines des plantes contre des attaques de champignons et nématodes pathogènes, le système à deux composants GacS/GacA est essentiel à la production de métabolites secondaires et d'exoenzymes requis pour l'activité de biocontrôle de la bactérie. La cascade régulatrice initiée pas GacS/GacA fait intervenir deux protéines répresseur de traduction, RsmA et RsmE, ainsi que trois petits ARNs RsmX, RsmY et RsmZ, dont la production est contrôlée par GacA. Ces petits ARNs ont pour rôle de contrecarrer l'action des protéines répressseur de la traduction, ce qui permet l'expression de facteurs de biocontrôle. Des analyses génétiques ont révélé la présence de deux senseurs supplémentaires, appelés Rets et Lads, qui interviennent dans la cascade Gac/Rsm de P. fluorescens. L'impact de ces senseurs est, respectivement, négatif et positif. Ces interactions ont apparenunent lieu au niveau de GacS et permettent une modulation de l'expression des antibiotiques et de l'acide cyanhydrique, ainsi que du gène rpoS codant pour le facteur sigma du stress. La température s'est révélée être un facteur environnemental important qui influence la cascade Gac/Rsm. Il s'avère en effet que la production d'antibiotiques ainsi que d'acide cyanhydrique est moins importante à 35°C qu'à 30°C. L'implication du senseur Rets dans ce contrôle par la température a pu être démontrée. La régulation positive du petit ARN RsmY par GacA et RsmA/RsmE a pu être confirmée; par le biais d'une analyse mutationelle, deux régions essentielles ont pu être mises en évidence dans la région promotrice de rsmY. Malgré le manque de preuves expérimentales directes, certains indices suggèrent que GacA puisse directement se fixer sur une des deux régions (appelée UAS), tandis que la deuxième région (appelée linker) serait plutôt reconnue par des facteurs intermédiaires (activateurs ou répresseurs) dépendant de RsmA/RsmE. En conclusion, ce travail a dévoilé de nouveaux éléments permettant d'éclairer les mécanismes de transduction des signaux dans la cascade Gac/Rsm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many gamma-proteobacteria, the conserved GacS/GacA (BarA/UvrY) two-component system positively controls the expression of one to five genes specifying small RNAs (sRNAs) that are characterized by repeated unpaired GGA motifs but otherwise appear to belong to several independent families. The GGA motifs are essential for binding small, dimeric RNA-binding proteins of a single conserved family designated RsmA (CsrA). These proteins, which also occur in bacterial species outside the gamma-proteobacteria, act as translational repressors of certain mRNAs when these contain an RsmA/CsrA binding site at or near the Shine-Dalgarno sequence plus additional binding sites located in the 5' untranslated leader mRNA. Recent structural data have established that the RsmA-like protein RsmE of Pseudomonas fluorescens makes specific contacts with an RNA consensus sequence 5'-(A)/(U)CANGGANG(U)/(A)-3' (where N is any nucleotide). Interaction with an RsmA/CsrA protein promotes the formation of a short stem supporting an ANGGAN loop. This conformation hinders access of 30S ribosomal subunits and hence translation initiation. The output of the Gac/Rsm cascade varies widely in different bacterial species and typically involves management of carbon storage and expression of virulence or biocontrol factors. Unidentified signal molecules co-ordinate the activity of the Gac/Rsm cascade in a cell population density-dependent manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plant-beneficial bacterium Pseudomonas brassicacearum forms phenotypic variants in vitro as well as in planta during root colonization under natural conditions. Transcriptome analysis of typical phenotypic variants using microarrays containing coding as well as noncoding DNA fragments showed differential expression of several genes relevant to secondary metabolism and of the small RNA (sRNA) genes rsmX, rsmY, and rsmZ. Naturally occurring mutations in the gacS-gacA system accounted for phenotypic switching, which was characterized by downregulation of antifungal secondary metabolites (2,4-diacetylphloroglucinol and cyanide), indoleacetate, exoenzymes (lipase and protease), and three different N-acyl-homoserine lactone molecules. Moreover, in addition to abrogating these biocontrol traits, gacS and gacA mutations resulted in reduced expression of the type VI secretion machinery, alginate biosynthesis, and biofilm formation. In a gacA mutant, the expression of rsmX was completely abolished, unlike that of rsmY and rsmZ. Overexpression of any of the three sRNAs in the gacA mutant overruled the pleiotropic changes and restored the wild-type phenotypes, suggesting functional redundancy of these sRNAs. In conclusion, our data show that phenotypic switching in P. brassicacearum results from mutations in the gacS-gacA system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Pseudomonas fluorescens CHA0 and other fluorescent pseudomonads, the Gac/Rsm signal transduction pathway is instrumental for secondary metabolism and biocontrol of root pathogens via the expression of regulatory small RNAs (sRNAs). Furthermore, in strain CHA0, an imbalance in the Krebs cycle can affect the strain's ability to produce extracellular secondary metabolites, including biocontrol factors. Here, we report the metabolome of wild-type CHA0, a gacA-negative mutant, which has lost Gac/Rsm activities, and a retS-negative mutant, which shows strongly enhanced Gac/Rsm-dependent activities. Capillary electrophoresis-based metabolomic profiling revealed that the gacA and retS mutations had opposite effects on the intracellular levels of a number of central metabolites, suggesting that the Gac/Rsm pathway regulates not only secondary metabolism but also primary metabolism in strain CHA0. Among the regulated metabolites identified, the alarmone guanosine tetraphosphate (ppGpp) was characterized in detail by the construction of relA (for ppGpp synthase) and spoT (for ppGpp synthase/hydrolase) deletion mutants. In a relA spoT double mutant, ppGpp synthesis was completely abolished, the expression of Rsm sRNAs was attenuated, and physiological functions such as antibiotic production, root colonization, and plant protection were markedly diminished. Thus, ppGpp appears to be essential for sustaining epiphytic fitness and biocontrol activity of strain CHA0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the plant-beneficial bacterium Pseudomonas fluorescens CHA0, the expression of antifungal exoproducts is controlled by the GacS/GacA two-component system. Two RNA binding proteins (RsmA, RsmE) ensure effective translational repression of exoproduct mRNAs. At high cell population densities, GacA induces three small RNAs (RsmX, RsmY, RsmZ) which sequester both RsmA and RsmE, thereby relieving translational repression. Here we systematically analyse the features that allow the RNA binding proteins to interact strongly with the 5' untranslated leader mRNA of the P. fluorescens hcnA gene (encoding hydrogen cyanide synthase subunit A). We obtained evidence for three major RsmA/RsmE recognition elements in the hcnA leader, based on directed mutagenesis, RsmE footprints and toeprints, and in vivo expression data. Two recognition elements were found in two stem-loop structures whose existence in the 5' leader region was confirmed by lead(II) cleavage analysis. The third recognition element, which overlapped the hcnA Shine-Dalgarno sequence, was postulated to adopt either an open conformation, which would favour ribosome binding, or a stem-loop structure, which may form upon interaction with RsmA/RsmE and would inhibit access of ribosomes. Effective control of hcnA expression by the Gac/Rsm system appears to result from the combination of the three appropriately spaced recognition elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Pseudomonas protegens CHA0 and other fluorescent pseudomonads, the Gac/Rsm signal transduction pathway controls secondary metabolism and suppression of fungal root pathogens via the expression of regulatory small RNAs (sRNAs). Because of its high cost, this pathway needs to be protected from overexpression and to be turned off in response to environmental stress such as the lack of nutrients. However, little is known about its underlying molecular mechanisms. In this study, we demonstrated that Lon protease, a member of the ATP-dependent protease family, negatively regulated the Gac/Rsm cascade. In a lon mutant, the steady-state levels and the stability of the GacA protein were significantly elevated at the end of exponential growth. As a consequence, the expression of the sRNAs RsmY and RsmZ and that of dependent physiological functions such as antibiotic production were significantly enhanced. Biocontrol of Pythium ultimum on cucumber roots required fewer lon mutant cells than wild-type cells. In starved cells, the loss of Lon function prolonged the half-life of the GacA protein. Thus, Lon protease is an important negative regulator of the Gac/Rsm signal transduction pathway in P. protegens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the optimization and use of a Sequential Injection Analysis (SIA) procedure for ammonium determination in waters. Response Surface Methodology (RSM) was used as a tool for optimization of a procedure based on the modified Berthelot reaction. The SIA system was designed to (i) prepare the reaction media by injecting an air-segmented zone containing the reagents in a mixing chamber, (ii) to aspirate the mixture back to the holding coil after homogenization, (iii) drive it to a thermostated reaction coil, where the flow is stopped for a previously established time, and (iv) to pump the mixture toward the detector flow cell for the spectrophotometric measurements. Using a 100 mu mol L(-1) ammonium solution, the following factors were considered for optimization: reaction temperature (25 - 45 degrees C), reaction time (30 - 90 s), hypochlorite concentration (20 - 40 mmol L(-1)) nitroprusside concentration (10 - 40 mmol L(-1)) and salicylate concentration (0.1 - 0.3 mol L(-1)). The proposed system fed the statistical program with absorbance data for fast construction of response surface plots. After optimization of the method, figures of merit were evaluated, as well as the ammonium concentration in some water samples. No evidence of statistical difference was observed in the results obtained by the proposed method in comparison to those obtained by a reference method based on the phenol reaction. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the increasing emphasis on health and well-being, nutrition aspects need to be incorporated as a dimension of product development. Thus, the production of a high-fibre content snack food from a mixture of corn and flaxseed flours was optimized by response surface methodology. The independent variables considered in this study were: feed moisture, process temperature and flaxseed flour addition, as they were found to significantly impact the resultant product. These variables were studied according to a rotatable composite design matrix (-1.68, -1, 0, 1, 1.68). Response variable was the expansion ratio since it has been highly correlated with acceptability. The optimum corn-flaxseed snack obtained presented a sevenfold increase in dietary fibre, almost 100% increase in protein content compared to the pure corn snack, and yielded an acceptability score of 6.93. This acceptability score was similar to those observed for corn snack brands in the market, indicating the potential commercial use of this new product, which can help to increase the daily consumption of dietary fibre.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Response surface methodology (RSM), based on a 2(2) full factorial design, evaluated the moisture effects in recovering xylose by diethyloxalate (DEO) hydrolysis. Experiments were carried out in laboratory reactors (10 mL glass ampoules) containing corn stover (0.5 g) properly ground. The ampoules were kept at 160 degrees C for 90 min.(-) Both DEO concentration and corn stover moisture content were statistically significant at 99% confidence level. The maximum xylose recovery by the response surface methodology was achieved employing both DEO concentration and corn stover moisture at near their highest levels area. We amplified this area by using an overlay plot as a graphical optimization using a response of xylose recovery more than 80%. The mathematical statistical model was validated by testing a specific condition in the satisfied overlay plot area. Experimentally, a maximum xylose recovery (81.2%) was achieved by using initial corn stover moisture of 60% and a DEO concentration of 4% w/w. The mathematical statistical model showed that xylose recovery increases during DEO corn stover acid hydrolysis as the corn stover moisture level increases. This observation could be important during the harvesting of corn before it is fully dried in the field. The corn stover moisture was an important variable to improve xylose recovery by DEO acid hydrolysis. (c) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The combined effects of vanillin and syringaldehyde on xylitol production by Candida guilliermondii using response surface methodology (RSM) have been studied. A 2(2) full-factorial central composite design was employed for experimental design and analysis of the results. RESULTS: Maximum xylitol productivities (Q(p) = 0.74 g L(-1) h(-1)) and yields (Y(P/S) = 0.81 g g(-1)) can be attained by adding only vanillin at 2.0 g L(-1) to the fermentation medium. These data were closely correlated with the experimental results obtained (0.69 +/- 0.04 g L(-1) h(-1) and 0.77 +/- 0.01 g g(-1)) indicating a good agreement with the predicted value. C. guilliermondii was able to convert vanillin completely after 24 h of fermentation with 94% yield of vanillyl alcohol. CONCLUSIONS: The bioconversion of xylose into xylitol by C. guilliermondii is strongly dependent on the combination of aldehydes and phenolics in the fermentation medium. Vanillin is a source of phenolic compound able to improve xylitol production by yeast. The conversion of vanillin to alcohol vanilyl reveals the potential of this yeast for medium detoxification. (C) 2009 Society of Chemical Industry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two screenings of commercial lipases were performed to find a lipase with superior performance for the integrated production of biodiesel and monoglycerides. The first screening was carried out under alcoholysis conditions using ethanol as acyl acceptor to convert triglycerides to their corresponding ethyl esters (biodiesel). The second screening was performed under glycerolysis conditions to yield monoglycerides (MG). All lipases were immobilized on silica-PVA composite by covalent immobilization. The assays were performed using babassu oil and alcohols (ethanol or glycerol) in solvent free systems. For both substrates, lipase from Burkholderia cepacia (lipase PS) was found to be the most suitable enzyme to attain satisfactory yields. To further improve the process, the Response Surface Methodology (RSM) was used to determine the optima operating conditions for each biotransformation. For biodiesel production, the highest transesterification yield (>98%) was achieved within 48 h reaction at 39 degrees C using an oil-to-ethanol molar ratio of 1:7. For MG production, optima conditions corresponded to oil-to-glycerol molar ratio of 1: 15 at 55 degrees C, yielding 25 wt.% MG in 6 h reaction. These results show the potential of B. cepacia lipase to catalyze both reactions and the feasibility to consider an integrated approach for biodiesel and MG production. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to develop a dessert that contains soy protein (SP) (1%, 2%, 3%) and guava juice (GJ) (22%, 27%, 32%) using Response Surface Methodology (RSM) as the optimisation technique. Water activity, physical stability, colour, acidity, pH, iron, and carotenoid contents were analysed. Affective tests were performed to determine the degree of liking of colour, creaminess, and acceptability. The results showed that GJ increased the values of redness, hue angle, chromaticity, acidity, and carotenoid content, while SP reduced water activity. Optimisation suggested a dessert containing 32% GJ and 1.17% SP as the best proportion of these components. This sample was considered a source of fibres, ascorbic acid, copper, and iron and garnered scores above the level of `slightly liked` for sensory attributes. Moreover, RSM was shown to be an adequate approach for modelling the physicochemical parameters and the degree of liking of creaminess of desserts. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Desserts made with soy cream, which are oil-in-water emulsions, are widely consumed by lactose-intolerant individuals in Brazil. In this regard, this study aimed at using response surface methodology (RSM) to optimize the sensory attributes of a soy-based emulsion over a range of pink guava juice (GJ: 22% to 32%) and soy protein (SP: 1% to 3%). WHC and backscattering were analyzed after 72 h of storage at 7 degrees C. Furthermore, a rating test was performed to determine the degree of liking of color, taste, creaminess, appearance, and overall acceptability. The data showed that the samples were stable against gravity and storage. The models developed by RSM adequately described the creaminess, taste, and appearance of the emulsions. The response surface of the desirability function was used successfully in the optimization of the sensory properties of dairy-free emulsions, suggesting that a product with 30.35% GJ and 3% SP was the best combination of these components. The optimized sample presented suitable sensory properties, in addition to being a source of dietary fiber, iron, copper, and ascorbic acid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fed-batch culture can offer significant improvement in recombinant protein production compared to batch culture in the baculovirus expression vector system (BEVS), as shown by Nguyen et al. (1993) and Bedard et al. (1994) among others. However, a thorough analysis of fed-batch culture to determine its limits in improving recombinant protein production over batch culture has yet to be performed. In this work, this issue is addressed by the optimisation of single-addition fed-batch culture. This type of fed-batch culture involves the manual addition of a multi-component nutrient feed to batch culture before infection with the baculovirus. The nutrient feed consists of yeastolate ultrafiltrate, lipids, amino acids, vitamins, trace elements, and glucose, which were added to batch cultures of Spodoptera frugiperda (Sf9) cells before infection with a recombinant Autographa californica nuclear polyhedrosis virus (Ac-NPV) expressing beta-galactosidase (beta-Gal). The fed-batch production of beta-Gal was optimised using response surface methods (RSM). The optimisation was performed in two stages, starting with a screening procedure to determine the most important variables and ending with a central-composite experiment to obtain a response surface model of volumetric beta-Gal production. The predicted optimum volumetric yield of beta-Gal in fed-batch culture was 2.4-fold that of the best yields in batch culture. This result was confirmed by a statistical analysis of the best fed-batch and batch data (with average beta-Gal yields of 1.2 and 0.5 g/L, respectively) obtained from this laboratory. The response surface model generated can be used to design a more economical fed-batch operation, in which nutrient feed volumes are minimised while maintaining acceptable improvements in beta-Gal yield. (C) 1998 John Wiley & Sons, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Corrosion of reinforcement bars in concrete structures is the most significant deterioration mechanism in these structures. Corrosion is extremely difficult to predict and, consequently, can be regarded as an unpredictable event. Following this, robustness assessment methods can be employed to define the susceptibility of a structure to corrosion. In this work, robustness is measured in terms of the remaining safety of a deteriorated structure. The proposed methodology is illustrated by means of a reinforced concrete (RC) slab subjected to dead and live loads. The performance of the corroded slab is evaluated using non-linear analysis. The reliability index is adopted to assess the safety of the deteriorated structure. To compute the reliability index a strategy combining the First Order Reliability Method (FORM) and the Response Surface Method (RSM) is used.