371 resultados para ROVs
Resumo:
The California market squid (Loligo opalescens Berry), also known as the opalescent inshore squid (FAO), plays a central role in the nearshore ecological communities of the west coast of the United States (Morejohn et al., 1978; Hixon, 1983) and it is also a prime focus of California fisheries, ranking first in dollar value and tons landed in recent years (Vojkovich, 1998). The life span of this species is only 7−10 months after hatching, as ascertained by aging statoliths (Butler et al., 1999; Jackson, 1994; Jackson and Domier, 2003) and mariculture trials (Yang, et al., 1986). Thus, annual recruitment is required to sustain the population. The spawning season ranges from April to November and spawning peaks from May to June. In some years there can be a smaller second peak in November. In Monterey Bay, the squids are fished directly on the egg beds, and the consequences of this practice for conservation and fisheries management are unknown but of some concern (Hanlon, 1998). Beginning in April 2000, we began a study of the in situ spawning behavior of L. opalescens in the southern Monterey Bay fishing area.
Resumo:
Habitat mapping and characterization has been defined as a high-priority management issue for the Olympic Coast National Marine Sanctuary (OCNMS), especially for poorly known deep-sea habitats that may be sensitive to anthropogenic disturbance. As a result, a team of scientists from OCNMS, National Centers for Coastal Ocean Science (NCCOS), and other partnering institutions initiated a series of surveys to assess the distribution of deep-sea coral/sponge assemblages within the sanctuary and to look for evidence of potential anthropogenic impacts in these critical habitats. Initial results indicated that remotely delineating areas of hard bottom substrate through acoustic sensing could be a useful tool to increase the efficiency and success of subsequent ROV-based surveys of the associated deep-sea fauna. Accordingly, side scan sonar surveys were conducted in May 2004, June 2005, and April 2006 aboard the NOAA Ship McArthur II to: (1) obtain additional imagery of the seafloor for broader habitat-mapping coverage of sanctuary waters, and (2) help delineate suitable deep-sea coral/sponge habitat, in areas of both high and low commercial-fishing activities, to serve as sites for surveying-in more detail using an ROV on subsequent cruises. Several regions of the sea floor throughout the OCNMS were surveyed and mosaicked at 1-meter pixel resolution. Imagery from the side scan sonar mapping efforts was integrated with other complementary data from a towed camera sled, ROVs, sedimentary samples, and bathymetry records to describe geological and biological (where possible) aspects of habitat. Using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999), we created a preliminary map of various habitat polygon features for use in a geographical information system (GIS). This report provides a description of the mapping and groundtruthing efforts as well as results of the image classification procedure for each of the areas surveyed. (PDF contains 60 pages.)
Resumo:
NOAA has a mandate to explore and understand deep-sea coral ecology under Magnuson-Stevens Sustainable Fisheries Conservation Act Reauthorization of 2009. Deep-sea corals are increasingly considered a proxy for marine biodiversity in the deep-sea because corals create complex structure, and this structure forms important habitat for associated species of shrimp, crabs, sea stars, brittle stars, and fishes. Yet, our understanding of the nature of the relationships between deep-corals and their associated species is incomplete. One of the primary challenges of conducting any type of deep-sea coral (DSC) research is access to the deep-sea. The deep-sea is a remote environment that often requires long surface transits and sophisticated research vehicles like submersibles and remotely operated vehicles (ROVs). The research vehicles often require substantial crew, and the vehicles are typically launched from large research vessels costing many thousands of dollars a day. To overcome the problem of access to the deep-sea, the Deep Coral and Associated Species Taxonomy and Ecology (DeepCAST) Expeditions are pioneering the use of shore-based submersibles equipped to do scientific research. Shore-based subs alleviate the need for expensive ships because they launch and return under their own power. One disadvantage to the approach is that shore-based subs are restricted to nearby sites. The disadvantage is outweighed, however, by the benefit of repeated observations, and the opportunity to reduce the costs of exploration while expanding knowledge of deep-sea coral ecology.
Resumo:
文章给出了水下机器人的定义 ,依据定义进行了分类 ,简要回顾了几类重要水下机器人的进展 ,指出了无人无缆自治水下机器人 (AUVs)是当今水下机器人研究与开发的热点 ,介绍了最近 2 0年沈阳自动化研究所与国内外有关单位合作 ,在水下机器人领域从无人有缆遥控水下机器人 (ROVs)到AUVs的研究开发工作 ,它从一个侧面反映了我国在这一领域的进展情况。
Resumo:
简要回顾了自治水下机器人AUVs研究的历史,概述了AUVs研究开发的现状和未来发展趋势
Resumo:
A intervenção humana no manuseamento de veículos submarinos operados remotamente (ROVs) é um requisito necessário para garantir o sucesso da missão e a integridade do equipamento. Contudo, a sua teleoperação não é fácil, pelo que a condução assistida destes veículos torna-se relevante. Esta dissertação propõe uma solução para este problema para ROVs de 3DOF (surge, heave e yaw). São propostas duas abordagens distintas – numa primeira propõe-se um sistema de controlo Image Based Visual Servoing (IBVS) tendo em vista a utilização exclusiva de uma câmara (sensor existente neste tipo de sistemas) por forma a melhorar significativamente a teleoperação de um pequeno ROV; na segunda, propõe-se um sistema de controlo cinemático para o plano horizontal do veículo e um algoritmo de uma manobra capaz de dotar o ROV de movimento lateral através de uma trajectória dente-de-serra. Demonstrou-se em cenários de operação real que o sistema proposto na primeira abordagem permite ao operador de um ROV com 3DOF executar tarefas de alguma complexidade (estabilização) apenas através de comandos de alto nível, melhorando assim drasticamente a teleoperação e qualidade de inspecção do veículo em questão. Foi também desenvolvido um simulador do ROV em MATLAB para validação e avaliação das manobras, onde o sistema proposto na segunda abordagem foi validado com sucesso.
Resumo:
It is well-known that ROVs require human intervention to guarantee the success of their assignment, as well as the equipment safety. However, as its teleoperation is quite complex to perform, there is a need for assisted teleoperation. This study aims to take on this challenge by developing vision-based assisted teleoperation maneuvers, since a standard camera is present in any ROV. The proposed approach is a visual servoing solution, that allows the user to select between several standard image processing methods and is applied to a 3-DOF ROV. The most interesting characteristic of the presented system is the exclusive use of the camera data to improve the teleoperation of an underactuated ROV. It is demonstrated through the comparison and evaluation of standard implementations of different vision methods and the execution of simple maneuvers to acquire experimental results, that the teleoperation of a small ROV can be drastically improved without the need to install additional sensors.
Resumo:
For the scientific and commercial utilization of Ocean resources, the role of intelligent underwater robotic systems are of great importance. Scientific activities like Marine Bio-technology, Hydrographic mapping, and commercial applications like Marine mining, Ocean energy, fishing, aquaculture, cable laying and pipe lining are a few utilization of ocean resources. As most of the deep undersea exploration are beyond the reachability of divers and also as the use of operator controlled and teleoperated Remotely Operated Vehicles (ROVs) and Diver Transport Vehicles (DTVs) turn out to be highly inefficient, it is essential to have a fully automated system capable providing stable control and communication links for the unstructured undersea environment.
Resumo:
El libro es el resultado de una amplia recopilación de conceptos geomorfológicos; su finalidad, es ayudar a los estudiantes a la comprensión de los mismos; de ahí su estílo esquemático, con el que se pretende la rápida visualización de los conceptos. La principal aportación del libro es la información gráfica y los subrayados, de tal manera que lo que se ofrece a lo largo de las nueve lecciones son ' un montón de figuras rodeadas de algunos textos escritos '.
Resumo:
Large scale image mosaicing methods are in great demand among scientists who study different aspects of the seabed, and have been fostered by impressive advances in the capabilities of underwater robots in gathering optical data from the seafloor. Cost and weight constraints mean that lowcost Remotely operated vehicles (ROVs) usually have a very limited number of sensors. When a low-cost robot carries out a seafloor survey using a down-looking camera, it usually follows a predetermined trajectory that provides several non time-consecutive overlapping image pairs. Finding these pairs (a process known as topology estimation) is indispensable to obtaining globally consistent mosaics and accurate trajectory estimates, which are necessary for a global view of the surveyed area, especially when optical sensors are the only data source. This thesis presents a set of consistent methods aimed at creating large area image mosaics from optical data obtained during surveys with low-cost underwater vehicles. First, a global alignment method developed within a Feature-based image mosaicing (FIM) framework, where nonlinear minimisation is substituted by two linear steps, is discussed. Then, a simple four-point mosaic rectifying method is proposed to reduce distortions that might occur due to lens distortions, error accumulation and the difficulties of optical imaging in an underwater medium. The topology estimation problem is addressed by means of an augmented state and extended Kalman filter combined framework, aimed at minimising the total number of matching attempts and simultaneously obtaining the best possible trajectory. Potential image pairs are predicted by taking into account the uncertainty in the trajectory. The contribution of matching an image pair is investigated using information theory principles. Lastly, a different solution to the topology estimation problem is proposed in a bundle adjustment framework. Innovative aspects include the use of fast image similarity criterion combined with a Minimum spanning tree (MST) solution, to obtain a tentative topology. This topology is improved by attempting image matching with the pairs for which there is the most overlap evidence. Unlike previous approaches for large-area mosaicing, our framework is able to deal naturally with cases where time-consecutive images cannot be matched successfully, such as completely unordered sets. Finally, the efficiency of the proposed methods is discussed and a comparison made with other state-of-the-art approaches, using a series of challenging datasets in underwater scenarios
Resumo:
The determination of hydrodynamic coefficients of full scale underwater vehicles using system identification (SI) is an extremely powerful technique. The procedure is based on experimental runs and on the analysis of on-board sensors and thrusters signals. The technique is cost effective and it has high repeatability; however, for open-frame underwater vehicles, it lacks accuracy due to the sensors' noise and the poor modeling of thruster-hull and thruster-thruster interaction effects. In this work, forced oscillation tests were undertaken with a full scale open-frame underwater vehicle. These conducted tests are unique in the sense that there are not many examples in the literature taking advantage of a PMM installation for testing a prototype and; consequently, allowing the comparison between the experimental results and the ones estimated by parameter identification. The Morison's equation inertia and drag coefficients were estimated with two parameter identification methods, that is, the weighted and the ordinary least-squares procedures. It was verified that the in-line force estimated from Morison's equation agrees well with the measured one except in the region around the motion inversion points. On the other hand, the error analysis showed that the ordinary least-squares provided better accuracy and, therefore, was used to evaluate the ratio between inertia and drag forces for a range of Keulegan-Carpenter and Reynolds numbers. It was concluded that, although both experimental and estimation techniques proved to be powerful tools for evaluation of an open-frame underwater vehicle's hydrodynamic coefficients, the research provided a rich amount of reference data for comparison with reduced models as well as for dynamic motion simulation of ROVs. [DOI: 10.1115/1.4004952]
Resumo:
A number of autonomous underwater vehicles, AUV, are equipped with commercial ducted propellers, most of them produced originally for the remote operated vehicle, ROV, industry. However, AUVs and ROVs are supposed to work quite differently since the ROV operates in almost the bollard pull condition, while the AUV works at larger cruising speeds. Moreover, they can have an influence in the maneuverability of AUV due to the lift the duct generates in the most distant place of the vehicle's center of mass. In this work, it is proposed the modeling of the hydrodynamic forces and moment on a duct propeller according to a numerical (CFD) simulation, and analytical and semi-empirical, ASE, approaches. Predicted values are compared to experimental results produced in a towing tank. Results confirm the advantages of the symbiosis between CFD and ASE methods for modeling the influence of the propeller duct in the AUV maneuverability. (C) 2012 Elsevier Ltd. All rights reserved.