998 resultados para RNase III


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcription termination of messenger RNA (mRNA) is normally achieved by polyadenylation followed by Rat1p-dependent 5'-3' exoribonuleolytic degradation of the downstream transcript. Here we show that the yeast ortholog of the dsRNA-specific ribonuclease III (Rnt1p) may trigger Rat1p-dependent termination of RNA transcripts that fail to terminate near polyadenylation signals. Rnt1p cleavage sites were found downstream of several genes, and the deletion of RNT1 resulted in transcription readthrough. Inactivation of Rat1p impaired Rnt1p-dependent termination and resulted in the accumulation of 3' end cleavage products. These results support a model for transcription termination in which cotranscriptional cleavage by Rnt1p provides access for exoribonucleases in the absence of polyadenylation signals.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The double helix is a ubiquitous feature of RNA molecules and provides a target for nucleases involved in RNA maturation and decay. Escherichia coli ribonuclease III participates in maturation and decay pathways by site-specifically cleaving double-helical structures in cellular and viral RNAs. The site of cleavage can determine RNA functional activity and half-life and is specified in part by local tertiary structure elements such as internal loops. The involvement of base pair sequence in determining cleavage sites is unclear, because RNase III can efficiently degrade polymeric double-stranded RNAs of low sequence complexity. An alignment of RNase III substrates revealed an exclusion of specific Watson–Crick bp sequences at defined positions relative to the cleavage site. Inclusion of these “disfavored” sequences in a model substrate strongly inhibited cleavage in vitro by interfering with RNase III binding. Substrate cleavage also was inhibited by a 3-bp sequence from the selenocysteine-accepting tRNASec, which acts as an antideterminant of EF-Tu binding to tRNASec. The inhibitory bp sequences, together with local tertiary structure, can confer site specificity to cleavage of cellular and viral substrates without constraining the degradative action of RNase III on polymeric double-stranded RNA. Base pair antideterminants also may protect double-helical elements in other RNA molecules with essential functions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ethidium bromide (EB) is known to inhibit cleavage of bacterial rRNA precursors by Escherichia coli ribonuclease III, a dsRNA-specific nuclease. The mechanism of EB inhibition of RNase III is not known nor is there information on EB-binding sites in RNase III substrates. We show here that EB is a reversible, apparently competitive inhibitor of RNase III cleavage of small model substrates in vitro. Inhibition is due to intercalation, since (i) the inhibitory concentrations of EB are similar to measured EB intercalation affinities; (ii) substrate cleavage is not affected by actinomycin D, an intercalating agent that does not bind dsRNA; (iii) the EB concentration dependence of inhibition is a function of substrate structure. In contrast, EB does not strongly inhibit the ability of RNase III to bind substrate. EB also does not block substrate binding by the C-terminal dsRNA-binding domain (dsRBD) of RNase III, indicating that EB perturbs substrate recognition by the N-terminal catalytic domain. Laser photocleavage experiments revealed two ethidium-binding sites in the substrate R1.1 RNA. One site is in the internal loop, adjacent to the scissile bond, while the second site is in the lower stem. Both sites consist of an A-A pair stacked on a CG pair, a motif which apparently provides a particularly favorable environment for intercalation. These results indicate an inhibitory mechanism in which EB site-specifically binds substrate, creating a cleavage-resistant complex that can compete with free substrate for RNase III. This study also shows that RNase III recognition and cleavage of substrate can be uncoupled and supports an enzymatic mechanism of dsRNA cleavage involving cooperative but not obligatorily linked actions of the dsRBD and the catalytic domain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The studies presented in this thesis aimed to a better understanding of the molecular biology of Sweet potato chlorotic stunt virus (SPCSV, Crinivirus, Closteroviridae) and its role in the development of synergistic viral diseases. The emphasis was on the severe sweet potato virus disease (SPVD) that results from a synergistic interaction of SPCSV and Sweet potato feathery mottle virus (SPFMV, Potyvirus, Potyviridae). SPVD is the most important disease affecting sweetpotato. It is manifested as a significant increase in symptom severity and SPFMV titres. This is accompanied by a dramatic sweetpotato yield reduction. SPCSV titres remain little affected in the diseased plants. Viral synergistic interactions have been associated with the suppression of an adaptive general defence mechanism discovered in plants and known as RNA silencing. In the studies of this thesis two novel proteins (RNase3 and p22) identified in the genome of a Ugandan SPCSV isolate were shown to be involved in suppression of RNA silencing. RNase3 displayed a dsRNA-specific endonuclease activity that enhanced the RNA-silencing suppression activity of p22. Comparative analyses of criniviral genomes revealed variability in the gene content at the 3´end of the genomic RNA1. Molecular analyses of different isolates of SPCSV indicated a marked intraspecific heterogeneity in this region where the p22 and RNase3 genes are located. Isolates of the East African strain of SPCSV from Tanzania and Peru and an isolate from Israel were missing a 767-nt fragment that included the p22 gene. However, regardless of the absence of p22, all SPCSV isolates acted synergistically with SPFMV in co-infected sweetpotato, enhanced SPFMV titres and caused SPVD. These results showed that p22 is dispensable for development of SPVD. The role of RNase3 in SPVD was then studied by generating transgenic plants expressing the RNase3 protein. These plants had increased titres of SPFMV (ca. 600-fold higher in comparison with nontransgenic plants) 2-3 weeks after graft inoculation and displayed the characteristic SPVD symptoms. RNA silencing suppression (RSS) activity of RNase3 was detected in agroinfiltrated leaves of Nicotiana bethamiana. In vitro studies showed that RNase3 was able to cleave small interferring RNAs (siRNA) to products of ~14-nt. The data thus identified RNase3 as a suppressor of RNA silencing able to cleave siRNAs. RNase3 expression alone was sufficient for breaking down resistance to SPFMV in sweetpotato and for the development of SPVD. Similar RNase III-like genes exist in animal viruses which points out a novel and possibly more general mechanism of RSS by viruses. A reproducible method of sweetpotato transformation was used to target RNA silencing against the SPCSV polymerase region (RdRp) with an intron-spliced hairpin construct. Hence, engineered resistance to SPCSV was obtained. Ten out of 20 transgenic events challenged with SPCSV alone showed significantly reduced virus titres. This was however not sufficient to prevent SPVD upon coinfection with SPFMV. Immunity to SPCSV seems to be required to control SPVD and targeting of different SPCSV regions need to be assessed in further studies. Based on the identified key role of RNase3 in SPVD the possibility to design constructs that target this gene might prove more efficient in future studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

UPNa. Instituto de Agrobiotecnología. Laboratorio de Biofilms Microbianos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Micro-(mi)RNAs play a pivotal role in the developmental regulation of plants and animals. We reasoned that disruption of normal heterochronic activity in differentiating Meloidogyne incognita eggs may lead to irregular development, lethality and by extension, represent a novel target for parasite control On silencing the nuclear RNase III enzyme drosha, a critical effector of miRNA maturation in animals, we found a significant inhibition of normal development and hatching in short interfering (sORNA-soaked M incognita eggs Developing juveniles presented with highly irregular tissue patterning within the egg, and we found that unlike our previous gene silencing efforts focused on FMRFamide (Phe-Met-Arg-Phe-NH2)-like peptides (FLPs), there was no observable phenotypic recovery following removal of the environmental siRNA. Aberrant phenotypes were exacerbated over time, and drosha knockdown proved embryonically lethal Subsequently, we identified and silenced the drosha cofactor pasha, revealing a comparable inhibition of normal embryonic development within the eggs to that of drosha-silenced eggs, eventually leading to embryonic lethality To further probe the link between normal embryonic development and the M. incognita RNA interference (RNAi) pathway, we attempted to examine the impact of silencing the cytosolic RNase III enzyme dicer. Unexpectedly, we found a substantial up-regulation of dicer transcript abundance, which did not impact on egg differentiation or hatching rates. Silencing of the individual transcripts in hatched J2s was significantly less successful and resulted in temporary phenotypic aberration of the J2s. which recovered within 24 h to normal movement and posture on washing out the siRNA. Soaking the J2s in dicer siRNA resulted in a modest decrease in dicer transcript abundance which had no observable impact on phenotype or behaviour within 48 h of initial exposure to siRNA. We propose that drosha, pasha and their ancillary factors may represent excellent targets for novel nematicides and/or in planta controls aimed at M incognita, and potentially other parasitic nematodes, through disruption of miRNA-directed developmental pathways. In addition, we have identified a putative Mi-en-I transcript which encodes an RNAi-inhibiting siRNA exonuclease We observe a marked up-regulation of MI-en-I transcript abundance in response to exogenously introduced siRNA, and reason that this may impact on the interpretation of RN/NI-based reverse genetic screens in plant parasitic nematodes. (C) 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

RNA mediated gene silencing pathways are highly conserved among eukaryotes and they have been well investigated in animals and in plants. Longer dsRNA molecules trigger the silencing pathways: RNase III proteins and their dsRNA binding protein (dsRBP) partners recognize those molecules as a substrate and process 21 nucleotide long microRNAs (miRNAs) or small interfering RNAs (siRNAs). Some organisms encode RNA dependent RNA polymerases (RdRPs), which are able to expand the pool of existing siRNAs. Argonaute proteins are able to bind small regulatory RNAs and are subsequently recruited to target mRNAs by base complementary. This leads in turn to transcriptional or posttranscriptional silencing of respective genes. The Dictyostelium discoideum genome encodes two Dicer homologues (DrnA and DrnB), five Argonaute proteins (AgnA to AgnE) and three RdRPs (RrpA to RrpC). In addition, the amoeba is known to express miRNAs and siRNAs, while the latter derive mainly from the DIRS-1 retrotransposon. One part of this work focused on the miRNA biogenesis pathway of D. discoideum. It was shown that the dsRNA binding protein RbdB is a necessary component for miRNA processing in the amoeba. There were no mature miRNAs detectable by Northern blot analysis in rbdB- strains, which is also true for drnB mutants. Moreover, primary miRNA-transcripts (pri-miRNAs) accumulated in rbdB- and drnB- strains. Fluorescence microscopy studies showed a nuclear localization of RbdB. RbdB accumulated in distinct perinucleolar foci. These were reminiscent of plant dicing bodies that contain essential protein components for miRNA processing. It is well known that RNase III enzymes and dsRBPs work together during miRNA processing in higher eukaryotes. This work demonstrated that the same is true for members of the amoebozoa supergroup. In Arabidopsis the nuclear zinc finger protein Serrate (SE) is also necessary for miRNA processing. The D. discoideum homologue SrtA, however, is not relevant which has been shown by the analysis of the respective knockdown strain. MiRNAs are known to be differentially expressed in several RNAi knockout strains. The accumulation of miRNAs in agnA- strains and a strong decrease in rbdB- strains were criteria that could thus be successfully used (among others) to identify and validate new miRNAs candidates by Illumina®-RNA sequencing. In another part of this study, the silencing and amplification of the DIRS-1 retrotransposons was analyzed in more detail. It was already known that DIRS-1 transcripts and extrachromosomal DIRS-1 DNA molecules accumulated in agnA- strains. This phenotype was correlated with the loss of endogenous DIRS-1 siRNAs in the knockout strain. By deep sequencing analysis of small RNAs from the AX2 wild type and the agnA- strain, the strong decrease of endogenous DIRS-1 siRNAs in the mutant strain (accounting for 70 %) could be confirmed. Further analysis of the data revealed an unequal distribution of DIRS-1 derived siRNAs along the retroelement in the wild type strain, since only very few of them matched the inverted terminal repeats (ITRs) and the 5’- half of the first open reading frame (ORF). Besides, sense and antisense siRNAs were asymmetrically distributed, as well. By using different reporter constructs it was shown indirectly that AgnA is necessary for the RrpC mediated production of secondary DIRS-1 siRNAs. These analyses also demonstrated an amplification of siRNAs in 5’- and in 3’-direction. Further analysis of the agnA- strain revealed that not only DIRS-1 sense transcripts but also ORF2 and ORF3 encoded proteins were enriched. In contrast, the ORF1 encoded protein GAG was equally expressed in the mutant and the wild type. This might reflect the unequal distribution of endogenous DIRS-1 siRNAs along the retrotransposon. Southern Blot and PCR-analyses showed that extrachromosomal DIRS-1 DNA molecules are present in the cytoplasm of angA- strains and that they are complementary to sense transcripts of intact DIRS-1 elements. Thus, the extrachromosomal DIRS-1 intermediates are likely incomplete cDNA molecules generated by the DIRS-1 encoded reverse transcriptase. One could hypothesize that virus like particles (VLPs) are the places of DIRS-1 cDNA synthesis. At least, DIRS-1 GAG proteins interact and fluorescence microscopy studies showed that they localize in distinct cytoplasmic foci which accumulate in close proximity to the nuclei.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pst operon of Escherichia coli is composed of five genes that encode a high-affinity phosphate transport system. pst belongs to the PHO regulon, which is a group of genes and operons that are induced in response to phosphate limitation. The pst operon also has a regulatory role in the repression of PHO genes` transcription under phosphate excess conditions. Transcription of pst is initiated at the promoter located upstream to the first gene, pstS. Immediately after its synthesis, the primary transcript of pst is cleaved into shorter mRNA molecules in a ribonuclease E-dependent manner. Other ribonucleases, such as RNase III and MazF, do not play a role in pst mRNA processing. RNase E is thus at least partially responsible for processing the pst primary transcript.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have reexamined the role of yeast RNase III (Rnt1p) in ribosome synthesis. Analysis of pre-rRNA processing in a strain carrying a complete deletion of the RNT1 gene demonstrated that the absence of Rnt1p does not block cleavage at site A0 in the 5' external transcribed spacers (ETS), although the early pre-rRNA cleavages at sites A0, A1, and A2 are kinetically delayed. In contrast, cleavage in the 3' ETS is completely inhibited in the absence of Rnt1p, leading to the synthesis of a reduced level of a 3' extended form of the 25S rRNA. The 3' extended forms of the pre-rRNAs are consistent with the major termination at site T2 (+210). We conclude that Rnt1p is required for cleavage in the 3' ETS but not for cleavage at site A0. The sites of in vivo cleavage in the 3' ETS were mapped by primer extension. Two sites of Rnt1p-dependent cleavage were identified that lie on opposite sides of a predicted stem loop structure, at +14 and +49. These are in good agreement with the consensus Rnt1p cleavage site. Processing of the 3' end of the mature 25S rRNA sequence in wild-type cells was found to occur concomitantly with processing of the 5' end of the 5.8S rRNA, supporting previous proposals that processing in ITS1 and the 3' ETS is coupled.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

5-Lipoxygenase (5LO) plays a pivotal role in cellular leukotriene synthesis. To identify proteins interacting with human 5LO, we used a two-hybrid approach to screen a human lung cDNA library. From a total of 1.5 × 107 yeast transformants, nine independent clones representing three different proteins were isolated and found to specifically interact with 5LO. Four 1.7- to 1.8-kb clones represented a 16-kDa protein named coactosin-like protein for its significant homology with coactosin, a protein found to be associated with actin in Dictyostelium discoideum. Coactosin-like protein thus may provide a link between 5LO and the cytoskeleton. Two other yeast clones of 1.5 kb encoded transforming growth factor (TGF) type β receptor-I-associated protein 1 partial cDNA. TGF type β receptor-I-associated protein 1 recently has been reported to associate with the activated form of the TGF β receptor I and may be involved in the TGF β-induced up-regulation of 5LO expression and activity observed in HL-60 and Mono Mac 6 cells. Finally, three identical 2.1-kb clones contained the partial cDNA of a human protein with high homology to a hypothetical helicase K12H4.8 from Caenorhabditis elegans and consequently was named ΔK12H4.8 homologue. Analysis of the predicted amino acid sequence revealed the presence of a RNase III motif and a double-stranded RNA binding domain, indicative of a protein of nuclear origin. The identification of these 5LO-interacting proteins provides additional approaches to studies of the cellular functions of 5LO.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two main types of noncoding small RNA molecules have been found in plants: microRNAs (miRNAs) and small interfering RNAs (siRNAs). They differ in their biogenesis and mode of action, but share similar sizes (20-24 nt). Their precursors are processed by Dicer-Like RNase III (dcl) proteins present in Arabidopsis thaliana, and in their mature form can act as negative regulators of gene expression, being involved in a vast array of plant processes, including plant development, genomic integrity or response to stress. Small-RNA mediated regulation can occurs at transcriptional level (TGS) or at post-transcriptional level (PTGS). In recent years, the role of gene silencing in the regulation of expression of genes related to plant defence responses against bacterial pathogens is becoming clearer. Comparisons carried out in our lab between the expression profiles of different mutants affected in gene silencing, and plants challenged with Pseudomonas syringae pathovar tomato DC3000, led us to identify a set of uncharacterized R genes, belonging to the TIR-NBS-LRR gene family, differentially expressed in these conditions. Through the use of bioinformatics tools, we found a miRNA* of 22 nt putatively responsible for down-regulating expression of these R genes through the generation of siRNAs. We have also found that the corresponding pri-miRNA is down-regulated after PAMP-perception in a SA-dependent manner. We also demonstrate that plants with altered levels of miRNA* (knockdown lines or overexpression lines) exhibit altered PTI-associated phenotypes, suggesting a role for this miRNA* in this defence response against bacteria. In addition we identify one of the target genes as a negative regulator of defence response against Pseudomonas syringae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In cycling cells positive stimuli like nutrient, growth factors and mitogens increase ribosome biogenesis rate and protein synthesis to ensure both growth and proliferation. In contrast, under stress situation, proliferating cells negatively modulate ribosome production to reduce protein synthesis and block cell cycle progression. The main strategy used by cycling cell to coordinate cell proliferation and ribosome biogenesis is to share regulatory elements, which participate directly in ribosome production and in cell cycle regulation. In fact, there is evidence that stimulation or inhibition of cell proliferation exerts direct effect on activity of the RNA polymerases controlling the ribosome biogenesis, while several alterations in normal ribosome biogenesis cause changes of the expression and the activity of the tumor suppressor p53, the main effector of cell cycle progression inhibition. The available data on the cross-talk between ribosome biogenesis and cell proliferation have been until now obtained in experimental model in which changes in ribosome biogenesis were obtained either by reducing the activity of the RNA polymerase I or by down-regulating the expression of the ribosomal proteins. The molecular pathways involved in the relationship between the effect of the inhibition of RNA polymerase III (Pol III) activity and cell cycle progression have been not yet investigated. In eukaryotes, RNA Polymerase III is responsible for transcription of factors involved both in ribosome assembly (5S rRNA) and rRNA processing (RNAse P and MRP).Thus, the aim of this study is characterize the effects of the down-regulation of RNA Polymerase III activity, or the specific depletion of 5S rRNA. The results that will be obtained might lead to a deeper understanding of the molecular pathway that controls the coordination between ribosome biogenesis and cell cycle, and might give useful information about the possibility to target RNA Polymerase III for cancer treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lead(II)-induced cleavage can be used as a tool to probe conformational changes in RNA. In this report, we have investigated the conformation of M1 RNA, the catalytic subunit of Escherichia coli RNase P, by studying the lead(II)-induced cleavage pattern in the presence of various divalent metal ions. Our data suggest that the overall conformation of M1 RNA is very similar in the presence of Mg2+, Mn2+, Ca2+, Sr2+ and Ba2+, while it is changed compared to the Mg2+-induced conformation in the presence of other divalent metal ions, Cd2+ for example. We also observed that correct folding of some M1 RNA domains is promoted by Pb2+, while folding of other domain(s) requires the additional presence of other divalent metal ions, cobalt(III) hexamine or spermidine. Based on the suppression of Pb2+ cleavage at increasing concentrations of various divalent metal ions, our findings suggest that different divalent metal ions bind with different affinities to M1 RNA as well as to an RNase P hairpin–loop substrate and yeast tRNAPhe. We suggest that this approach can be used to obtain information about the relative binding strength for different divalent metal ions to RNA in general, as well as to specific RNA divalent metal ion binding sites. Of those studied in this report, Mn2+ is generally among the strongest RNA binders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mixed double-decker Eu\[Pc(15C5)4](TPP) (1) was obtained by base-catalysed tetramerisation of 4,5-dicyanobenzo-15-crown-5 using the half-sandwich complex Eu(TPP)(acac) (acac = acetylacetonate), generated in situ, as the template. For comparative studies, the mixed triple-decker complexes Eu2\[Pc(15C5)4](TPP)2 (2) and Eu2\[Pc(15C5)4]2(TPP) (3) were also synthesised by the raise-by-one-story method. These mixed ring sandwich complexes were characterised by various spectroscopic methods. Up to four one-electron oxidations and two one-electron reductions were revealed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). As shown by electronic absorption and infrared spectroscopy, supramolecular dimers (SM1 and SM3) were formed from the corresponding double-decker 1 and triple-decker 3 in the presence of potassium ions in MeOH/CHCl3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical characteristics of a series of heteroleptic tris(phthalocyaninato) complexes with identical rare earths or mixed rare earths (Pc)M(OOPc)M(OOPc) [M = Eu...Lu, Y; H2Pc = unsubstituted phthalocyanine, H2(OOPc) = 3,4,12,13,21,22,30,31-octakis(octyloxy)phthalocyanine] and (Pc)Eu(OOPc)Er(OOPc) have been recorded and studied comparatively by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in CH2Cl2 containing 0.1 M tetrabutylammonium perchlorate (TBAP). Up to five quasi-reversible one-electron oxidations and four one-electron reductions have been revealed. The half-wave potentials of the first, second and fifth oxidations depend on the size of the metal center, but the fifth changes in the opposite direction to that of the first two. Moreover, the difference in redox potentials of the first oxidation and first reduction for (Pc)M(OOPc)M(OOPc), 0.85−0.98 V, also decreases linearly along with decreasing rare earth ion radius, clearly showing the rare earth ion size effect and indicating enhanced π−π interactions in the triple-deckers connected by smaller lanthanides. This order follows the red-shift seen in the lowest energy band of triple-decker compounds. The electronic differences between the lanthanides and yttrium are more apparent for triple-decker sandwich complexes than for the analogous double-deckers. By comparing triple-decker, double-decker and mononuclear [ZnII] complexes containing the OOPc ligand, the HOMO−LUMO gap has been shown to contract approximately linearly with the number of stacked phthalocyanine ligands.