997 resultados para RNA world
Resumo:
The addition of a capped mini-exon [spliced leader (SL)] through trans-splicing is essential for the maturation of RNA polymerase (pol) II-transcribed polycistronic pre-mRNAs in all members of the Trypanosomatidae family. This process is an inter-molecular splicing reaction that follows the same basic rules of cis-splicing reactions. In this study, we demonstrated that mini-exons were added to precursor ribosomal RNA (pre-rRNA) are transcribed by RNA pol I, including the 5' external transcribed spacer (ETS) region. Additionally, we detected the SL-5'ETS molecule using three distinct methods and located the acceptor site between two known 5'ETS rRNA processing sites (A' and A1) in four different trypanosomatids. Moreover, we detected a polyadenylated 5'ETS upstream of the trans-splicing acceptor site, which also occurs in pre-mRNA trans-splicing. After treatment with an indirect trans-splicing inhibitor (sinefungin), we observed SL-5'ETS decay. However, treatment with 5-fluorouracil (a precursor of RNA synthesis that inhibits the degradation of pre-rRNA) led to the accumulation of SL-5'ETS, suggesting that the molecule may play a role in rRNA degradation. The detection of trans-splicing in these molecules may indicate broad RNA-joining properties, regardless of the polymerase used for transcription.
Resumo:
The addition of a capped mini-exon [spliced leader (SL)] through trans-splicing is essential for the maturation of RNA polymerase (pol) II-transcribed polycistronic pre-mRNAs in all members of the Trypanosomatidae family. This process is an inter-molecular splicing reaction that follows the same basic rules of cis-splicing reactions. In this study, we demonstrated that mini-exons were added to precursor ribosomal RNA (pre-rRNA) are transcribed by RNA pol I, including the 5' external transcribed spacer (ETS) region. Additionally, we detected the SL-5' ETS molecule using three distinct methods and located the acceptor site between two known 5' ETS rRNA processing sites (A' and A1) in four different trypanosomatids. Moreover, we detected a polyadenylated 5' ETS upstream of the trans-splicing acceptor site, which also occurs in pre-mRNA trans-splicing. After treatment with an indirect trans-splicing inhibitor (sinefungin), we observed SL-5' ETS decay. However, treatment with 5-fluorouracil (a precursor of RNA synthesis that inhibits the degradation of pre-rRNA) led to the accumulation of SL-5' ETS, suggesting that the molecule may play a role in rRNA degradation. The detection of trans-splicing in these molecules may indicate broad RNA-joining properties, regardless of the polymerase used for transcription.
Resumo:
A main unsolved problem in the RNA World scenario for the origin of life is how a template-dependent RNA polymerase ribozyme emerged from short RNA oligomers obtained by random polymerization on mineral surfaces. A number of computational studies have shown that the structural repertoire yielded by that process is dominated by topologically simple structures, notably hairpin-like ones. A fraction of these could display RNA ligase activity and catalyze the assembly of larger, eventually functional RNA molecules retaining their previous modular structure: molecular complexity increases but template replication is absent. This allows us to build up a stepwise model of ligation- based, modular evolution that could pave the way to the emergence of a ribozyme with RNA replicase activity, step at which information-driven Darwinian evolution would be triggered. Copyright © 2009 RNA Society.
Resumo:
The purpose of this paper is to review two mathematical models: one for the formation of homochiral polymers from an originally chirally symmetric system; and the other, to show how, in an RNA-world scenario, RNA can simultaneously act both as information storage and a catalyst for its own production. We note the similarities and differences in chemical mechanisms present in the systems. We review these two systems, analysing steady-states, interesting kinetics and the stability of symmetric solutions. In both systems we show that there are ranges of parameter values where some chains increase their own concentrations faster than others.
Resumo:
The purpose of this paper is to review two mathematical models: one for the formation of homochiral polymers from an originally chirally symmetric system; and the other, to show how, in an RNA-world scenario, RNA can simultaneously act both as information storage and a catalyst for its own production. We note the similarities and differences in chemical mechanisms present in the systems. We review these two systems, analysing steady-states, interesting kinetics and the stability of symmetric solutions. In both systems we show that there are ranges of parameter values where some chains increase their own concentrations faster than others.
Resumo:
Short peptides corresponding to the arginine-rich domains of several RNA-binding proteins are able to bind to their specific RNA sites with high affinities and specificities. In the case of the HIV-1 Rev-Rev response element (RRE) complex, the peptide forms a single α-helix that binds deeply in a widened, distorted RNA major groove and makes a substantial set of base-specific and backbone contacts. Using a reporter system based on antitermination by the bacteriophage λ N protein, it has been possible to identify novel arginine-rich peptides from combinatorial libraries that recognize the RRE with affinities and specificities similar to Rev but that appear to bind in nonhelical conformations. Here we have used codon-based mutagenesis to evolve one of these peptides, RSG-1, into an even tighter binder. After two rounds of evolution, RSG-1.2 bound the RRE with 7-fold higher affinity and 15-fold higher specificity than the wild-type Rev peptide, and in vitro competition experiments show that RSG-1.2 completely displaces the intact Rev protein from the RRE at low peptide concentrations. By fusing RRE-binding peptides to the activation domain of HIV-1 Tat, we show that the peptides can deliver Tat to the RRE site and activate transcription in mammalian cells, and more importantly, that the fusion proteins can inhibit the activity of Rev in chloramphenicol acetyltransferase reporter assays. The evolved peptides contain proline and glutamic acid mutations near the middle of their sequences and, despite the presence of a proline, show partial α-helix formation in the absence of RNA. These directed evolution experiments illustrate how readily complex peptide structures can be evolved within the context of an RNA framework, perhaps reflecting how early protein structures evolved in an “RNA world.”
Resumo:
In an RNA world, RNAs would have regulated traffic through normally impermeable bilayer membranes. Using selection-amplification we previously found RNAs that bind stably and increase the ionic conductance of phospholipid membranes at high Mg2+ and Ca2+ concentrations. Now selection in reduced divalents yields RNAs that bind phosphatidylcholine liposomes under conditions closer to physiological. Such affinity for phospholipid membranes requires interactions between RNAs. In fact, we detected no functional monomeric membrane-binding RNAs. A membrane-active end-to-end heterotrimer consisting of 2 RNA 9 and 1 RNA 10 is defined by nucleotide protection, oligonucleotide competition, and mutant analysis. Oligomers of the heterotrimer bind stably, cause release of liposome-encapsulated solutes, and disrupt model black membranes. Individual RNA molecules do not show any of these activities. This novel mechanism of RNA binding to lipid membranes may not only regulate membrane permeability, but suggests that arrays of catalytic or structural RNAs on membranes are plausible. Finally, a selection met only by RNA complexes evokes new possibilities for selection-amplification itself.
Resumo:
The past few years have brought about a fundamental change in our understanding and definition of the RNA world and its role in the functional and regulatory architecture of the cell. The discovery of small RNAs that regulate many aspects of differentiation and development have joined the already known non-coding RNAs that are involved in chromosome dosage compensation, imprinting, and other functions to become key players in regulating the flow of genetic information. It is also evident that there are tens or even hundreds of thousands of other non-coding RNAs that are transcribed from the mammalian genome, as well as many other yet-to-be-discovered small regulatory RNAs. In the recent symposium RNA: Networks & Imaging held in Heidelberg, the dual roles of RNA as a messenger and a regulator in the flow of genetic information were discussed and new molecular genetic and imaging methods to study RNA presented.
Resumo:
A main unsolved problem in the RNA world scenario for the origin of life is how a template-dependent RNA polymerase ribozyme emerged from short RNA oligomers generated by random polymerization of ribonucleotides (Joyce and Orgel 2006). Current estimates establish a minimum size about 165 nt long for such a ribozyme (Johnston et al. 2001), a length three to four times that of the longest RNA oligomers obtained by random polymerization on clay mineral surfaces (Huang and Ferris 2003, 2006). To overcome this gap, we have developed a stepwise model of ligation-based, modular evolution of RNA (Briones et al. 2009) whose main conceptual steps are summarized in Figure 1. This scenario has two main advantages with respect to previous hypotheses put forward for the origin of the RNA world: i) short RNA....
Resumo:
In the present paper some controversies on the origin of life are discussed. Did the first living beings on Earth have an autotrophic or heterotrophic origin? What did come first, genetic code or metabolism? Were cells invented early? What was the role of minerals regarding the origin of life?
Resumo:
Metalloids have characteristics between metals and non-metals which give them, in some cases, specific properties. At least two of this chemical elements, boron and silicon, are essential to a significant number of living organisms and since some years ago it has been observed that the same metalloids may be involved in the synthesis and stabilization of some molecules relevant to the origin of life.
Resumo:
Scientists have been debating for decades the origin of life on earth. A number of hypotheses were proposed as to what emerged first RNA or DNA; with most scientists are in favour of the "RNA World" hypothesis. Assuming RNA emerged first, it fellow that the RNA polymerases would've appeared before DNA polymerases. Using recombinant DNA technology and bioinformatics we undertook this study to explore the relationship between RNA polymerases, reverse transcriptase and DNA polymerases. The working hypothesis is that DNA polymerases evolved from reverse transcriptase and the latter evolved from RNA polymerases. If this hypothesis is correct then one would expect to find various ancient DNA polymerases with varying level of reverse transcriptase activity. In the first phase of this research project multiple sequence alignments were made on the protein sequence of 32 prokaryotic DNA-directed DNA polymerases originating from 11 prokaryotic families against 3 viral reverse transcriptase. The data from such alignments was not very conclusive. DNA polymerases with higher level of reverse transcriptase activity were non-confined to ancient organisms, as one would've expected. The second phase of this project was focused on conditions that may alter the DNA polymerase activity. Various reaction conditions, such as temperature, using various ions (Ni2+, Mn2+, Mg2+) were tested. Interestingly, it was found that the DNA polymerase from the Thermos aquatics family can be made to copy RNA into DNA (i.e. reverse transcriptase activity). Thus it was shown that under appropriate conditions (ions and reactions temperatures) reverse transcriptase activity can be induced in DNA polymerase. In the third phase of this study recombinant DNA technology was used to generate a chimeric DNA polymerase; in attempts to identify the region(s) of the polymerase responsible for RNA-directed DNA polymerase activity. The two DNA polymerases employed were the Thermus aquatic us and Thermus thermophiles. As in the second phase various reaction conditions were investigated. Data indicated that the newly engineered chimeric DNA polymerase can be induced to copy RNA into DNA. Thus the intrinsic reverse transcriptase activity found in ancient DNA polymerases was localized into a domain and can be induced via appropriate reaction conditions.
Resumo:
Les résultats ont été obtenus avec le logiciel "Insight-2" de Accelris (San Diego, CA)
Resumo:
Small non-protein-coding RNA (ncRNA) molecules have been recognized recently as major contributors to regulatory networks in controlling gene expression in a highly efficient manner. While the list of validated ncRNAs that regulate crucial cellular processes grows steadily, not a single ncRNA has been identified that directly interacts and regulates the ribosome during protein biosynthesis (with the notable exceptions of 7SL RNA and tmRNA). All of the recently discovered regulatory ncRNAs that act on translation (e.g. microRNAs, siRNAs or antisense RNAs) target the mRNA rather than the ribosome. This is unexpected, given the central position the ribosome plays during gene expression. Furthermore it is strongly assumed that the primordial translation system in the ‘RNA world’ most likely received direct regulatory input from ncRNA-like cofactors. The fundamental question that we would like to ask is: Does the ‘RNA world still communicate’ with the ribosome? To address this question, we have analyzed the small ncRNA interactomes of ribosomes of prokaryotic (H. volcanii, S. aureus) and unicellular eukaryotic model organisms. Deep-sequencing and subsequent bioinformatic analyses revealed thousands of putative ribosome-associated ncRNAs. For a subset of these ncRNA candidates we have gathered experimental evidence that they are expressed in a stress-dependent manner and indeed directly target the ribosome. In the archaeon H. volcanii a tRNA-derived fragment was identified to target the small ribosomal subunit upon alkaline stress in vitro and in vivo. As a consequence of ribosome binding, this tRNA-fragment reduces protein synthesis by interfering with the peptidyl transferase activity. Our data reveal the ribosome as a novel target for small regulatory ncRNAs in all domains of life. Ribosome-bound ncRNAs are capable of fine tuning translation and might represent a so far largely unexplored class of regulatory sRNAs.
Resumo:
Small non-protein-coding RNA (ncRNA) molecules have been recognized recently as major contributors to regulatory networks in controlling gene expression in a highly efficient manner. While the list of validated ncRNAs that regulate crucial cellular processes grows steadily, not a single ncRNA has been identified that directly interacts and regulates the ribosome during protein biosynthesis (with the notable exceptions of 7SL RNA and tmRNA). All of the recently discovered regulatory ncRNAs that act on translation (e.g. microRNAs, siRNAs or antisense RNAs) target the mRNA rather than the ribosome. This is unexpected, given the central position the ribosome plays during gene expression. Furthermore it is strongly assumed that the primordial translation system in the ‘RNA world’ most likely received direct regulatory input from ncRNA-like cofactors. The fundamental question that we would like to ask is: Does the ‘RNA world still communicate’ with the ribosome? To address this question, we have analyzed the small ncRNA interactomes of ribosomes of organisms from all three domains of life. Deep-sequencing and subsequent bioinformatic analyses revealed thousands of putative ribosome-associated ncRNAs.1,2 For a subset of these ncRNA candidates we have gathered experimental evidence that they are expressed in a stress-dependent manner and indeed directly target the ribosome. We show that some of these ribosome-bound small ncRNAs are capable of fine tuning protein synthesis in vitro and in vivo. Our data therefore reveal the ribosome as a novel target for small regulatory ncRNAs in all domains of life and suggest the existence of a so far largely unexplored mechanism of translation regulation.