981 resultados para RNA Processing
Resumo:
Plants control their flowering time in order to ensure that they reproduce under favourable conditions. The components involved in this complex process have been identified using a molecular genetic approach in Arabidopsis and classified into genetically separable pathways. The autonomous pathway controls the level of mRNA encoding a floral repressor, FLC, and comprises three RNA-binding proteins, FCA, FPA and FLK. FCA interacts with the 3'-end RNA-processing factor FY to autoregulate its own expression post-transcriptionally and to control FLC. Other components of the autonomous pathway, FVE and FLD, regulate FLC epigenetically. This combination of epigenetic and post-transcriptional control gives precision to the control of FLC expression and flowering time.
Resumo:
Small RNAs have several important biological functions. MicroRNAs (miRNAs) and trans-acting small interfering RNAs (tasiRNAs) regulate mRNA stability and translation, and siRNAs cause post-transcriptional gene silencing of transposons, viruses and transgenes and are important in both the establishment and maintenance of cytosine DNA methylation. Here, we study the role of the four Arabidopsis thaliana DICER-LIKE genes (DCL1-DCL4) in these processes. Sequencing of small RNAs from a dcl2 dcl3 dcl4 triple mutant showed markedly reduced tasiRNA and siRNA production and indicated that DCL1, in addition to its role as the major enzyme for processing miRNAs, has a previously unknown role in the production of small RNAs from endogenous inverted repeats. DCL2, DCL3 and DCL4 showed functional redundancy in siRNA and tasiRNA production and in the establishment and maintenance of DNA methylation. Our studies also suggest that asymmetric DNA methylation can be maintained by pathways that do not require siRNAs.
Resumo:
BACKGROUND: Over the past two decades more than fifty thousand unique clinical and biological samples have been assayed using the Affymetrix HG-U133 and HG-U95 GeneChip microarray platforms. This substantial repository has been used extensively to characterize changes in gene expression between biological samples, but has not been previously mined en masse for changes in mRNA processing. We explored the possibility of using HG-U133 microarray data to identify changes in alternative mRNA processing in several available archival datasets. RESULTS: Data from these and other gene expression microarrays can now be mined for changes in transcript isoform abundance using a program described here, SplicerAV. Using in vivo and in vitro breast cancer microarray datasets, SplicerAV was able to perform both gene and isoform specific expression profiling within the same microarray dataset. Our reanalysis of Affymetrix U133 plus 2.0 data generated by in vitro over-expression of HRAS, E2F3, beta-catenin (CTNNB1), SRC, and MYC identified several hundred oncogene-induced mRNA isoform changes, one of which recognized a previously unknown mechanism of EGFR family activation. Using clinical data, SplicerAV predicted 241 isoform changes between low and high grade breast tumors; with changes enriched among genes coding for guanyl-nucleotide exchange factors, metalloprotease inhibitors, and mRNA processing factors. Isoform changes in 15 genes were associated with aggressive cancer across the three breast cancer datasets. CONCLUSIONS: Using SplicerAV, we identified several hundred previously uncharacterized isoform changes induced by in vitro oncogene over-expression and revealed a previously unknown mechanism of EGFR activation in human mammary epithelial cells. We analyzed Affymetrix GeneChip data from over 400 human breast tumors in three independent studies, making this the largest clinical dataset analyzed for en masse changes in alternative mRNA processing. The capacity to detect RNA isoform changes in archival microarray data using SplicerAV allowed us to carry out the first analysis of isoform specific mRNA changes directly associated with cancer survival.
Resumo:
Insulin-like growth factor-I (IGF-I) signaling is strongly associated with cell growth and regulates the rate of synthesis of the rRNA precursor, the first and the key stage of ribosome biogenesis. In a screen for mediators of IGF-I signaling in cancer, we recently identified several ribosome-related proteins, including NEP1 (nucleolar essential protein 1) and WDR3 (WD repeat 3), whose homologues in yeast function in ribosome processing. The WDR3 gene and its locus on chromosome 1p12-13 have previously been linked with malignancy. Here we show that IGF-I induces expression of WDR3 in transformed cells. WDR3 depletion causes defects in ribosome biogenesis by affecting 18 S rRNA processing and also causes a transient down-regulation of precursor rRNA levels with moderate repression of RNA polymerase I activity. Suppression of WDR3 in cells expressing functional p53 reduced proliferation and arrested cells in the G1 phase of the cell cycle. This was associated with activation of p53 and sequestration of MDM2 by ribosomal protein L11. Cells lacking functional p53 did not undergo cell cycle arrest upon suppression of WDR3. Overall, the data indicate that WDR3 has an essential function in 40 S ribosomal subunit synthesis and in ribosomal stress signaling to p53-mediated regulation of cell cycle progression in cancer cells.
Resumo:
Pre-mRNA maturation in trypanosomatids occurs through a process called trans-splicing which involves excision of introns and union of exons in two independent transcripts. For the first time, we present the standardization of Trypanosoma cruzi permeable cells (Y strain) as a model for trans-splicing study of mRNAs in trypanosomes, following by RNase protection reaction, which localizes the SL exon and intron. This trans-splicing reaction in vitro was also used to analyze the influence of NFOH-121, a nitrofurazone-derivative, on this mechanism. The results suggested that the prodrug affects the RNA processing in these parasites, but the trans-splicing reaction still occurred.
Resumo:
Bronchial epithelial cells play a pivotal role in airway inflammation, but little is known about posttranscriptional regulation of mediator gene expression during the inflammatory response in these cells. Here, we show that activation of human bronchial epithelial BEAS-2B cells by proinflammatory cytokines interleukin-4 (IL-4) and tumor necrosis factor alpha (TNF-alpha) leads to an increase in the mRNA stability of the key chemokines monocyte chemotactic protein 1 and IL-8, an elevation of the global translation rate, an increase in the levels of several proteins critical for translation, and a reduction of microRNA-mediated translational repression. Moreover, using the BEAS-2B cell system and a mouse model, we found that RNA processing bodies (P bodies), cytoplasmic domains linked to storage and/or degradation of translationally silenced mRNAs, are significantly reduced in activated bronchial epithelial cells, suggesting a physiological role for P bodies in airway inflammation. Our study reveals an orchestrated change among posttranscriptional mechanisms, which help sustain high levels of inflammatory mediator production in bronchial epithelium during the pathogenesis of inflammatory airway diseases.
Resumo:
Wilms tumor (WT) is an embryonal renal tumor with a heterogeneous genetic etiology that serves as a valuable model for studying tumorigenesis. Biallelic inactivation of the tumor suppressor gene WT1, a zinc-finger transcriptional regulator located at 11p13, is critical for the development of some Wilms tumors. Interestingly, WT1 genomic analysis has demonstrated mutations in less than 20% of WT cases. This suggests either other genes play a more major role in Wilms tumorigenesis or WT1 is functionally altered by mechanisms other than DNA mutation. Previous observations in rat and in WT xenograft cell lines have suggested that abnormal WT1 RNA processing (exon 6 RNA editing and aberrant exon 2 splicing, respectively) is a potential mechanism of altering WT1 function in the absence of a WT1 DNA mutation. However, the role of this abnormal RNA processing has not previously been assessed in primary Wilms tumors. ^ To test the hypothesis that abnormal WT1 RNA processing is a mechanism of WT1alteration during tumor development, WT1 RNA from 85 primary tumors was analyzed using reverse transcription and polymerase chain reaction amplification (RT-PCR). Although no evidence for WT1 RNA editing was observed, variable levels (5% to 50%) of aberrant WT1 exon 2 splicing were detected for 11 tumors in the absence of a detectable WT1 DNA mutation. Also, alteration of normal WT1 alternative splicing, observed as RNA isoform loss, was detected in five tumors with no apparent WT1 genomic alteration, although no consistent pattern of RNA isoform loss was detected. This abnormal WT1 splicing, detected by either loss of exon 2 from some of the transcripts or loss of RNA isoforms, is statistically correlated with relapse (p = 0.005). These studies demonstrate that abnormal WT1 RNA processing is not a common mechanism of abrogating normal WT1 function in primary tumors. However, in those cases in which abnormal WTI splicing is present, these data indicate that it may serve as a useful prognostic marker for relapse in WT patients. ^
Resumo:
Two genes with related functions in RNA biogenesis were recently reported in patients with familial ALS: the FUS/TLS gene at the ALS6 locus and the TARDBP/TDP-43 gene at the ALS10 locus [1, 2]. FUS has been implicated to function in several steps of gene expression, including transcription regulation [3], RNA splicing [4, 5], mRNA transport in neurons [6] and, interestingly, in microRNA (miRNA) processing [7]. The goal of this project is to identify the molecular mechanisms leading to the development of FUS mutations-associated ALS. Specifically, we want to test the hypothesis that these FUS mutations misregulate miRNA levels that in turn affect the expression of genes critical for motor neuron survival. In addition we want to test whether misregulation of the miRNA profile is a common feature in ALS. We have performed immunoprecipitations from total extracts of 293T cells expressing FLAG-tagged FUS to characterize its interactome by mass spectrometry. This proteomic study not only revealed a strong interaction of FUS with splicing factors, but shows that FUS might be involved in many, quite different pathways. To map which parts of the FUS protein contribute to the interaction with splicing factors, we have performed a set of experiments with a series of missense and deletion mutants. With this approach, we will not only gain information on the binding partners of FUS along with a map of the required domains for the interactions, but it will also help to unravel whether certain ALS-associated FUS mutations lead to a loss or gain of function due to gain or loss of interactors. Additionally, we have performed quantitative interactomics using SILAC to identify interactome differences of ALS-associated FUS mutants. To this end we have performed immunoprecipitations of total extract from 293T cells, stably transduced with constructs expressing wild-type FUS-FLAG as well as three different ALS-associated mutants (G156E, R244C, P525L). First results indicate striking differences in the interactome with certain RNA binding proteins. We are now validating these candidates in order to reveal the importance of these differential interactions in the context of ALS.
Resumo:
A set of seven Sm proteins assemble on the Sm-binding site of spliceosomal U snRNAs to form the ring-shaped Sm core. The U7 snRNP involved in histone RNA 3' processing contains a structurally similar but biochemically unique Sm core in which two of these proteins, Sm D1 and D2, are replaced by Lsm10 and by another as yet unknown component. Here we characterize this factor, termed Lsm11, as a novel Sm-like protein with apparently two distinct functions. In vitro studies suggest that its long N-terminal part mediates an important step in histone mRNA 3'-end cleavage, most likely by recruiting a zinc finger protein previously identified as a processing factor. In contrast, the C-terminal part, which comprises two Sm motifs interrupted by an unusually long spacer, is sufficient to assemble with U7, but not U1, snRNA. Assembly of this U7-specific Sm core depends on the noncanonical Sm-binding site of U7 snRNA. Moreover, it is facilitated by a specialized SMN complex that contains Lsm10 and Lsm11 but lacks Sm D1/D2. Thus, the U7-specific Lsm11 protein not only specifies the assembly of the U7 Sm core but also fulfills an important role in U7 snRNP-mediated histone mRNA processing.
Resumo:
RNase mitochondrial RNA processing enzyme (MRP) is a nucleolar ribonucleoprotein particle that participates in 5.8S ribosomal RNA maturation in eukaryotes. This enzyme shares a polypeptide and an RNA structural motif with ribonuclease P (RNase P), a nuclear endoribonuclease originally described in the nucleus that processes RNA transcripts to generate their mature 5' termini. Both enzymes are also located in mitochondria. This report further characterizes the relationship between RNase MRP and RNase P. Antisense affinity selection with biotinylated 2'-O-methyl oligoribonucleotides and glycerol gradient fractionation experiments demonstrated that small subpopulations of RNase MRP and RNase P associate with each other in vivo in macromolecular complex, possibly 60-80S preribosomes. This latter notion was supported by fluorescence in situ hybridization experiments with antisense oligonucleotides that localized that RNA components of RNase MRP and RNase P to the nucleolus and to discrete cytoplasmic structures. These findings suggest that small subpopulations of RNase MRP and RNase P are physically associated, and that both may function in ribosomal RNA maturation or ribosome assembly.
Resumo:
A method was developed to detect 5' ends of bacterial RNAs expressed at low levels and to differentiate newly initiated transcripts from processed transcripts produced in vivo. The procedure involves use of RNA ligase to link a specific oligoribonucleotide to the 5' ends of cellular RNAs, followed by production of cDNA and amplification of the gene of interest by PCR. The method was used to identify the precise sites of transcription initiation within a 10-kb region of the pheromone-inducible conjugative plasmid pCF10 of Enterococcus faecalis. Results confirmed the 5' end of a very abundant, constitutively produced transcript (from prgQ) that had been mapped previously by primer extension and defined the initiation point of a less abundant, divergently transcribed message (from prgX). The method also showed that the 5' end of a pheromone-inducible transcript (prgB) that had been mapped by primer extension was generated by processing rather than new initiation. In addition, the results provided evidence for two promoters, 3 and 5 kb upstream of prgB, and indicated that only the transcripts originating 5 kb upstream may be capable of extending to prgB.
Resumo:
The developmental changes in hemoglobin gene expression known as "switching" involve both the sequential activation and silencing of the individual globin genes. We postulated that in addition to changes in transcription, posttranscriptional mechanisms may be involved in modulating globin gene expression. We studied globin RNA transcripts in human adult erythroid cells (hAEC to analyze the mechanism of silencing of the embryonic epsilon-globin gene in the adult stage and in K562 erythroleukemic cells to analyze the inactive state of their adult beta-globin genes. In hAEC, which express primarily the beta-globin gene, quantitative PCR analysis shows that beta-mRNA exon levels are high and comparable among the three exons; the RNA transcripts corresponding to exons of the gamma-globin gene are low, with slight differences among the three exons. Although epsilon-globin is not expressed, epsilon-globin RNA transcripts are detected, with exon I levels comparable to that of gamma-globin exon I and much higher than epsilon-exons II and III. As expected, in K562 cells that express high levels of epsilon- and gamma-globin, epsilon- and gamma-mRNA levels are high, with comparable levels of exons I, II, and III. In K562 cells beta-mRNA levels are very low but beta-exon I levels are much higher than that of exons II or III. Moreover, all or most of the globin transcripts for the highly expressed globin genes in both cell types (gamma and beta in hAEC, epsilon and gamma in K562 cells) found in the cytoplasm or nucleus are correctly processed. The globin transcripts that are detected both in the cytoplasm and nucleus of cells without expression of the corresponding protein are largely unspliced (containing one or two intervening sequences). These studies suggest that in addition to changes in transcription rates, changes in completion or processing of globin RNA transcripts may contribute to the developmental regulation of the hemoglobin phenotype.
Resumo:
The 3' cleavage generating non-polyadenylated animal histone mRNAs depends on the base pairing between U7 snRNA and a conserved histone pre-mRNA downstream element. This interaction is enhanced by a 100 kDa zinc finger protein (ZFP100) that forms a bridge between an RNA hairpin element upstream of the processing site and the U7 small nuclear ribonucleoprotein (snRNP). The N-terminus of Lsm11, a U7-specific Sm-like protein, was shown to be crucial for histone RNA processing and to bind ZFP100. By further analysing these two functions of Lsm11, we find that Lsm11 and ZFP100 can undergo two interactions, i.e. between the Lsm11 N-terminus and the zinc finger repeats of ZFP100, and between the N-terminus of ZFP100 and the Sm domain of Lsm11, respectively. Both interactions are not specific for the two proteins in vitro, but the second interaction is sufficient for a specific recognition of the U7 snRNP by ZFP100 in cell extracts. Furthermore, clustered point mutations in three phylogenetically conserved regions of the Lsm11 N-terminus impair or abolish histone RNA processing. As these mutations have no effect on the two interactions with ZFP100, these protein regions must play other roles in histone RNA processing, e.g. by contacting the pre-mRNA or additional processing factors.