963 resultados para RIBOSOMAL TRANSLOCASE
Resumo:
Mandibulofacial dysostosis with microcephaly (MFDM) is a rare sporadic syndrome comprising craniofacial malformations, microcephaly, developmental delay, and a recognizable dysmorphic appearance. Major sequelae, including choanal atresia, sensorineural hearing loss, and cleft palate, each occur in a significant proportion of affected individuals. We present detailed clinical findings in 12 unrelated individuals with MFDM; these 12 individuals compose the largest reported cohort to date. To define the etiology of MFDM, we employed whole-exome sequencing of four unrelated affected individuals and identified heterozygous mutations or deletions of EFTUD2 in all four. Validation studies of eight additional individuals with MFDM demonstrated causative EFTUD2 mutations in all affected individuals tested. A range of EPTUD2-mutation types, including null alleles and frameshifts, is seen in MFDM, consistent with haploinsufficiency; segregation is de novo in all cases assessed to date. U5-116kD, the protein encoded by EFTUD2, is a highly conserved spliceosomal GTPase with a central regulatory role in catalytic splicing and post-splicing-complex disassembly. MFDM is the fast multiple-malformation syndrome attributed to a defect of the major spliceosome. Our findings significantly extend the range of reported spliceosomal phenotypes in humans and pave the way for further investigation in related conditions such as Treacher Collins syndrome.
Resumo:
We have purified phage lambda beta protein produced by a recombinant plasmid carrying bet gene and confirm that it forms a complex with a protein of relative molecular mass 70 kDa. Therefore, beta protein, a component of general genetic recombination, is associated with two functionally diverse complexes; one containing exonuclease and the other 70 kDa protein. Using a number of independent methods, we show that 70 kDa protein is the ribosomal S1 protein of E. coli. Further, the association of 70 kDa protein with beta protein is biologically significant, as the former inhibits joining of the terminal ends of lambda chromosome and renaturation of complementary single stranded DNA promoted by the latter. More importantly, these findings initiate an understanding of an important mode of host- virus interaction in general with specific implication(s) in homologous genetic recombination.
Resumo:
Translation initiation from the ribosomal P-site is the specialty of the initiator tRNAs (tRNA(fMet)). Presence of the three consecutive G-C base pairs (G29-C41, G30-C40 and G31-C39) in their anticodon stems, a highly conserved feature of the initiator tRNAs across the three kingdoms of life, has been implicated in their preferential binding to the P-site. How this feature is exploited by ribosomes has remained unclear. Using a genetic screen, we have isolated an Escherichia coli strain, carrying a G122D mutation in folD, which allows initiation with the tRNA(fMet) containing mutations in one, two or all the three G-C base pairs. The strain shows a severe deficiency of methionine and S-adenosylmethionine, and lacks nucleoside methylations in rRNA. Targeted mutations in the methyltransferase genes have revealed a connection between the rRNA modifications and the fundamental process of the initiator tRNA selection by the ribosome.
Resumo:
Ribosomal phosphoproteins of Microsporum canis labelled in vivo were characterised by two-dimensional and SDS polyacrylamide gel electrophoresis. A small subunit protein, S6, was the only phosphoprotein identified in 40S and 80S in basic-acidic two-dimensional gels. Three different forms of phosphorylated S6 were also observed in 40S subunit. On SDS gels five phosphoproteins were identified in 80S; of these three were present in 40S and two in 60S. S6 was the only basic phosphoprotein, while the other four were acidic.
Resumo:
Native and derived ribosomal particles from the mycelial cells of Microsporum canis grown in the presence and absence of cycloheximide were compared by CsCl equilibrium density gradient centrifugation. Since the buoyant densities of ribonucleoprotein complexes are dependent on the protein-RNA ratio, they reflect the composition of these particles. The native monosomes from cells grown in the presence and absence of cycloheximide had a buoyant density of 1.585 g/cc. The native 60S subunits showed a density of 1.540 g/cc from cells grown in both presence and absence of cycloheximide, while the derived subunits showed a density of 1.610 g/cc. The derived 40S subunits had a density of 1.550 g/cc while the native 40S showed a major species of density 1.535 g/cc with three other minor species ranging in densities from 1.450-1.390 g/cc. The mycelia grown in the presence of cycloheximide showed an increased proportion of native 40S subunits in the density range of 1.450-1.390 g/cc, indicating that the drug enhances factor binding to native ribosomal subunits in M. canis.
Resumo:
The accuracy of the initiator tRNA (tRNA(fMet)) selection in the ribosomal P-site is central to the fidelity of protein synthesis. A highly conserved occurrence of three consecutive G-C base pairs in the anticodon stem of tRNA(fMet) contributes to its preferential selection in the P-site. In a genetic screen, using a plasmid borne copy of an inactive tRNA(fMet) mutant wherein the three G-C base pairs were changed, we isolated Escherichia coli strains that allow efficient initiation with the tRNA(fMet) mutant. Here, extensive characterization of two such strains revealed novel mutations in the metZWV promoter severely compromising tRNA(fMet) levels. Low cellular abundance of the chromosomally encoded tRNA(fMet) allows efficient initiation with the tRNA(fMet) mutant and an elongator tRNA(Gln), revealing that a high abundance of the cellular tRNA(fMet) is crucial for the fidelity of initiator tRNA selection on the ribosomal P-site in E. coli. We discuss possible implications of the changes in the cellular tRNA(fMet) abundance in proteome remodeling.
Resumo:
We have investigated the possible role of a conserved cis-acting element, the cryptic AUG, present in the 5' UTR of coxsackievirus B3 (CVB3) RNA. CVB3 5' UTR contains multiple AUG codons upstream of the initiator AUG, which are not used for the initiation of translation. The 48S ribosomal assembly takes place upstream of the cryptic AUG. We show here that mutation in the cryptic AUG results in reduced efficiency of translation mediated by the CVB3 IRES; mutation also reduces the interaction of mutant IRES with a well characterized IRES trans-acting factor, the human La protein. Furthermore, partial silencing of the La gene showed a decrease in IRES activity in the case of both the wild-type and mutant. We have demonstrated here that the interaction of the 48S ribosomal complex with mutant RNA was weaker compared with wild-type RNA by ribosome assembly analysis. We have also investigated by chemical and enzymic modifications the possible alteration in secondary structure in the mutant RNA. Results suggest that the secondary structure of mutant RNA was only marginally altered. Additionally, we have demonstrated by generating compensatory and non-specific mutations the specific function of the cryptic AUG in internal initiation. Results suggest that the effect of the cryptic AUG is specific and translation could not be rescued. However, a possibility of tertiary interaction of the cryptic AUG with other cis-acting elements cannot be ruled out. Taken together, it appears that the integrity of the cryptic AUG is important for efficient translation initiation by the CVB3 IRES RNA.
Resumo:
The cell cycle phase at starvation influences post-starvation differentiation and morphogenesis in Dictyostelium discoideum. We found that when expressed in Saccharomyces cerevisiae, a D. discoideum cDNA that encodes the ribosomal protein S4 (DdS4) rescues mutations in the cell cycle genes cdc24, cdc42 and bem1. The products of these genes affect morphogenesis in yeast via a coordinated moulding of the cytoskeleton during bud site selection. D. discoideum cells that over-or under-expressed DdS4 did not show detectable changes in protein synthesis but displayed similar developmental aberrations whose intensity was graded with the extent of over-or under-expression. This suggested that DdS4 might influence morphogenesis via a stoichiometric effect - specifically, by taking part in a multimeric complex similar to the one involving Cdc24p, Cdc42p and Bem1p in yeast. In support of the hypothesis, the S. cerevisiae proteins Cdc24p, Cdc42p and Bem1p as well as their D. discoideum cognates could be co-precipitated with antibodies to DdS4. Computational analysis and mutational studies explained these findings: a C-terminal domain of DdS4 is the functional equivalent of an SH3 domain in the yeast scaffold protein Bem1p that is central to constructing the bud site selection complex. Thus in addition to being part of the ribosome, DdS4 has a second function, also as part of a multi-protein complex. We speculate that the existence of the second role can act as a safeguard against perturbations to ribosome function caused by spontaneous variations in DdS4 levels.
Resumo:
The accuracy of pairing of the anticodon of the initiator tRNA (tRNA(fMet)) and the initiation codon of an mRNA, in the ribosomal P-site, is crucial for determining the translational reading frame. However, a direct role of any ribosomal element(s) in scrutinizing this pairing is unknown. The P-site elements, m(2)G966 (methylated by RsmD), m(5)C967 (methylated by RsmB) and the C-terminal tail of the protein S9 lie in the vicinity of tRNA(fMet). We investigated the role of these elements in initiation from various codons, namely, AUG, GUG, UUG, CUG, AUA, AUU, AUC and ACG with tRNA(CAU)(fmet) (tRNA(fMet) with CAU anticodon); CAC and CAU with tRNA(GUG)(fme); UAG with tRNA(GAU)(fMet) using in vivo and computational methods. Although RsmB deficiency did not impact initiation from most codons, RsmD deficiency increased initiation from AUA, CAC and CAU (2- to 3.6-fold). Deletion of the S9 C-terminal tail resulted in poorer initiation from UUG, GUG and CUG, but in increased initiation from CAC, CAU and UAC codons (up to 4-fold). Also, the S9 tail suppressed initiation with tRNA(CAU)(fMet)lacking the 3GC base pairs in the anticodon stem. These observations suggest distinctive roles of 966/967 methylations and the S9 tail in initiation.
Resumo:
The ribosomal P-site hosts the peptidyl-tRNAs during translation elongation. Which P-site elements support these tRNA species to maintain codon-anticodon interactions has remained unclear. We investigated the effects of P-site features of methylations of G966, C967, and the conserved C-terminal tail sequence of Ser, Lys, and Arg (SKR) of the S9 ribosomal protein in maintenance of the translational reading frame of an mRNA. We generated Escherichia coli strains deleted for the SKR sequence in S9 ribosomal protein, RsmB (which methylates C967), and RsmD (which methylates G966) and used them to translate LacZ from its +1 and -1 out-of-frame constructs. We show that the S9 SKR tail prevents both the +1 and -1 frameshifts and plays a general role in holding the P-site tRNA/peptidyl-tRNA in place. In contrast, the G966 and C967 methylations did not make a direct contribution to the maintenance of the translational frame of an mRNA. However, deletion of rsmB in the S9 Delta 3 background caused significantly increased -1 frameshifting at 37 degrees C. Interestingly, the effects of the deficiency of C967 methylation were annulled when the E. coli strain was grown at 30 degrees C, supporting its context-dependent role.
Resumo:
Tim23 is an essential channel-forming subunit of the presequence translocase recruiting multiple components for assembly of the core complex, thereby regulating the protein translocation process. However, understanding of the precise interaction of subunits associating with Tim23 remains largely elusive. Our findings highlight that transmembrane helix 1 (TM1) is required for homodimerization of Tim23, while, together with TM2, it is involved in preprotein binding within the channel. Based on our evidence, we predict that the TM1 and TM2 from each dimer are involved in the formation of the central translocation pore, aided by Tim17. Furthermore, TM2 is also involved in the recruitment of Tim21 and the presequence-associated motor (PAM) subcomplex to the Tim23 channel, while the matrix-exposed loop L1 generates specificity in their association with the core complex. Strikingly, our findings indicate that the C-terminal sequence of Tim23 is dispensable for growth and functions as an inhibitor for binding of Tim21. Our model conceptually explains the cooperative function between Tam41 and Pam17 subunits, while the antagonistic activity of Tim21 predominantly determines the bound and free forms of the PAM subcomplex during import.
Resumo:
In this study, we combine available high resolution structural information on eukaryotic ribosomes with low resolution cryo-EM data on the Hepatitis C Viral RNA (IRES) human ribosome complex. Aided further by the prediction of RNA-protein interactions and restrained docking studies, we gain insights on their interaction at the residue level. We identified the components involved at the major and minor contact regions, and propose that there are energetically favorable local interactions between 40S ribosomal proteins and IRES domains. Domain II of the IRES interacts with ribosomal proteins S5 and S25 while the pseudoknot and the downstream domain IV region bind to ribosomal proteins S26, S28 and S5. We also provide support using UV cross-linking studies to validate our proposition of interaction between the S5 and IRES domains II and IV. We found that domain IIIe makes contact with the ribosomal protein S3a (S1e). Our model also suggests that the ribosomal protein S27 interacts with domain IIIc while S7 has a weak contact with a single base RNA bulge between junction IIIabc and IIId. The interacting residues are highly conserved among mammalian homologs while IRES RNA bases involved in contact do not show strict conservation. IRES RNA binding sites for S25 and S3a show the best conservation among related viral IRESs. The new contacts identified between ribosomal proteins and RNA are consistent with previous independent studies on RNA-binding properties of ribosomal proteins reported in literature, though information at the residue level is not available in previous studies.