43 resultados para RHODOMELACEAE
Resumo:
Four new halogenated sesquiterpenes, 10-bromo-3-chloro-2,7-epoxychamigr-9-en-8a-of (1), 2,10 beta-dibromochamigra-2,7-dien-9 alpha-ol (2), (9S)-2-bromo-3-chloro-6,9-epoxybisabola-7(14),10-diene (3), and (9R)-2-bromo-3-chloro-6,9-epoxybisabola-7(14),10-diene (4), were characterized from the marine red alga Laurencia saitoi. In addition, two known halosesquiterpenes, 2,10-dibromo-3-chlorochamigr-7-en-9 alpha-ol (5) and isolaurenisol (6), were also isolated and identified. Their structures were established on the basis of extensive analysis of spectroscopic data.
Resumo:
The methanol-chloroform extract of the marine red alga, Rhodomela confervoides, was measured for antioxidant activity, using the alpha,alpha-diphenyl-beta-picrylhydrazyl radical-scavenging assay and the beta-carotene-linoleate bleaching assay systems, and compared with those of the positive Controls of butylated hydroxytoluene, gallic acid and ascorbic acid, The active extract was further purified by liquid-liquid partition to afford four fractions, of which the ethyl acetate-soluble (EA) fraction exhibited the strongest antioxidant activity in both assay systems. This fraction was further divided into seven subfractions, designated as EA1-EA7, by silica gel vacuum liquid chromatography. in most cases, EA1 and EM Were found to possess the strongest activity. The total phenolic contents and reducing powers of the extract, fractions, and subfractions were also determined. Significant associations between the antioxidant potency and the total phenolic content, as well as between the antioxidant potency and the reducing power, were found for the tested fractions and subfractions. (c) 2008 Elsevier Ltd. All rights reserved.
Formation and early development of tetraspores of Polysiphonia urceolata (Rhodomelaceae, Rhodophyta)
Resumo:
Polysiphonia urceolata is one type of potential commercial red seaweeds used for breeding and cultivation, because of its significant biochemical and biomedical application. However, the information of breeding and seedling incubation for cultivation is limited, especially the early development. In this study, tetrasporohyte and gametophyte of P. urceolata were taken as the study materials in Huiquan Bay, Qingdao, China. The cleaned and sterilized tetrasporophytes and gametophytes were pre-cultured in sterilized seawater, then nurtured at 18A degrees C, 25 mu mol photons m(-2) s(-1) in 12:12 h (light:dark) photoperiod. Continuous observation under microscope showed that the early development consists of bipolar division stage and seedling stage. In the division stage, tetraspores germinate into bipolar sporelings that further differentiate into a colorless rhizoidal portion and a lightly pigmented upright shoot. The lightly pigmented rhizoidal cell develops to a rhizoid and the larger pigmented cell transforms to an erect axis. In the seedling stage, several quasi-protuberances appear on the erect axis and form juvenile seedlings. The results demonstrate the culture of P. urceolata from tetraspores under laboratory conditions.
Resumo:
Three new natural occurring bromophenols, 3-(3-bromo-4,5-dihydroxyphenyl)-2-(3,5-dibromo-4-hydroxyphenyl)propionic acid (1), (E)-4-(3-bromo-4,5-dihydroxyphenyl)-but-3-en-2-one (2), and (3,5-dibromo-4-hydroxyphenyl) acetic acid butyl ester (3), together with one known bromophenol, 1,2-bis(3-bromo-4,5-dihydroxyphenyl)ethane (4), were isolated and identified from the marine red alga Polysiphonia urceolata. The structures of these compounds were elucidated by extensive analysis of ID and 2D NMR and IR spectra and MS data. Each of the isolated compounds was evaluated for scavenging alpha,alpha-diphenyl-beta-picrylhydrazyl (DPPH) radical activity and all of them exhibited significant activity with IC50 values ranging from 9.67 to 21.90 mu M, compared to the positive control, a well-known antioxidant butylated hydroxytoluene (BHT), with IC50 83.84 mu M. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The extracts obtained from 28 species of marine algae were evaluated for their antioxidant activity (AA) versus the positive controls butylated hydroxytoluene (BHT), gallic acid (GA), and ascorbic acid (AscA). Most of the tested samples displayed antioxidant activity to various degrees. Among them, the extract of Symphyocladia latiuscula exhibited the strongest AA, which was comparable to BHT, GA, and AscA in radical scavenging activity, as shown in the DPPH (alpha,alpha-diphenyl-beta-picrylhydrazyl) assay, and higher than those of the positive controls in beta-carotene-linoleate assay system. In addition, the ethyl acetate-soluble fraction isolated from the crude extract of S. latiuscula exhibited the highest antioxidant activity in both assay systems. This fraction was further fractionated into seven subfractions (F1-F7) by vacuum liquid chromatography (VLC). F1 and F4 were found to be the most effective subfractions in scavenging DPPH radical assay and in the beta-carotene-linoleate assay, respectively. The total phenolic content (TPC) and reducing power (RP) for all of the extracts, fractions, and subfractions (F1-F7) were also determined. The TPC of the 28 extracts ranged from 0.10 to 8.00 gallic acid equivalents (mg/g seaweed dry weight) while the RP ranged from 0.07 to 11.60 ascorbic acid equivalents (mg center dot g(-1) seaweed dry weight). Highly positive relationships between AA and TPC as well as between AA and RP were found for the extracts and fractions, while for the subfractions F1-F7 only weak or no such relations were found. The results obtained from this study indicate that further analysis is needed of those marine algal species that contain the most antioxidant activity in order to identify the active principles.
Resumo:
Three new polybrominated 1H-indoles, compounds 1-3, and three new aristolane sesquiterpenes, compounds 4-6, were isolated from the marine red alga Laurencia similis, together with seven known natural products. Their structures were elucidated on the basis of detailed spectroscopic and mass-spectrometric analyses, as well as by comparison with literature data.
Resumo:
Two new and one known squalenoid-derived triterpenoids. namely, laurenmariannol (1) and (21 alpha)-21-hydroxythyrsiferol (2). and the known thyrsiferol (3) were isolated and identified from the marine red alga Laurencia mariannensis, which was collected off the coast of Hainan and Weizhou Islands of China. The structures of these compounds were established by means of spectroscopic analyses, as well as by comparison with literature data. Compounds I and 2 displayed significant cytotoxic activity against P-388 tumor cells with IC50 values of 0.6 and 6.6 mu g/ml, respectively.
Resumo:
Two new brominated diterpenes, namely, laurendecumtriol (1) and 11-O-deacetylpinnaterpene C (2), one new polybromoindole, 2,3,4,6-tetrabromo-1-methyl-1H-indole (7), and six known natural products were isolated and identified from the marine red alga Laurencia decumbens. Their structures were elucidated on the basis of detailed spectroscopic and mass-spectrometric analysis as well as by comparison with literature data. Based on 2D-NMR experiments, the previously reported NMR data for pinnaterpene C (3) were reassigned.
Resumo:
Laurencia nanhaiense sp. nov. (Rhodomelaceae, Rhodophyta) is described from Hainan and Guangdong Provinces, China. The new species clearly displays one of the defining features of the genus, viz. four periaxial cells per vegetative axial segment. It differs from other closely related species in having a combination of features such as terete axes from a basal system composed of a primary, discoid holdfast and a secondary attachment to give rise to many short rhizoids, branching oppositely and alternately, irregularly tristichous or subverticillately polystichous, having more curve branches with very sparse, adventitious ultimate branchlets, non-projecting superficial cortical cells at the apices of ultimate branchlets, presence of longitudinally oriented secondary pit-connections between contiguous superficial cortical cells, absence of lenticular thickenings in the walls of medullary cells, parallel arrangement of tetrasporangia along the axis of stichidia, and presence of intercellular spaces between medullary cells.
Resumo:
Two species of Osmundea Stackhouse (Rhodomelaceae, Rhodophyta) that occur in Atlantic Europe have been confused under the names Osmundea ramosissima (Oeder) Athanasiadis and Osmundea truncata (Kutzing) Nam et Maggs, regarded until now as a synonym of O. ramosissima, An epitype from its type locality (Stavanger, Norway) is selected for Osmundea ramosissima Athanasiadis, recognized here as a valid name for Fucus ramosissimus Oeder, nom. illeg. Details of vegetative and reproductive morphology of O. ramosissima are reported, based on material from France, the British Isles, and Helgoland. Osmundea ramosissima resembles other species of Osmundea in its vegetative axial segments with two pericentral cells and one trichoblast, spermatangial development from apical and epidermal cells (filament type), the formation of five pericentral cells in the procarp-bearing segment of the female trichoblast, and tetrasporangial production from random epidermal cells. Among the species of Osmundea, O. ramosissima is most similar to O. truncata. Both species have discoid holdfasts, secondary pit connections between epidermal cells, and cup-shaped spermatangial pits. They differ in that: (a) O. ramosissima lacks lenticular wail thickenings and refractive needle-like inclusions in medullary cells, both of which are present in O. truncata; (b) O. ramosissima has branched spermatangial filaments that terminate in a cluster of several cells, whereas in O. truncata the unbranched spermatangial filaments have a single large terminal sterile cell; and (c) cystocarps of O. ramosissima lack protuberant ostioles but ostioles are remarkably protuberant in o. truncata. Phylogenetic analyses of rbcL sequences of Laurencia obtusa (Hudson) Lamouroux and all five Atlantic European species of Osmundea, including the type species, strongly support the generic status of Osmundea. Osmundea ramosissima and O. truncata are closely related (5.2% sequence divergence) and form a well-supported clade sister to a clade consisting of O. pinnatifida (Hudson) Stack-house, O. osmunda Stackhouse and O. hybrida (A. P. de Candolle) Nam. The formation of secondary pit connections between epidermal cells is a synapomorphy for the O. ramosissima + O. truncata clade. The close relationship between species with cup-shaped spermatangial pits (Osmundea hybrida) and urn-shaped pits (Osmundea pinnatifida and Osmundea osmunda) shows that spermatangial pit shape is not an important phylogenetic character. Parsimony analysis of a morphological data set also supports the genus Osmundea but conflicts with the molecular trees in infrageneric relationships, placing O. hybrida basal within the Osmundea clade and grouping O. osmunda and O. pinnatifida but not O. truncata and O. ramosissima. A key to Osmundea species is presented.
Resumo:
The genus Polysiphonia Greville, nom. cons., has had a long and confused nomenclatural history. At present, Polysiphonia has a wide circumscription, including at least 200 species, but it is heterogeneous in many vegetative and reproductive developmental features. Central to any re-evaluation of the genus is a detailed examination of the type species of Polysiphonia, P. urceolata (Lightfoot ex Dillwyn) Greville, which is conspecific with P. stricta (Dillwyn) Greville. We here report on the vegetative and reproductive morphology of P. stricta, including P, urceolata, based on type and other material from the British Isles. Thalli consist of prostrate and erect ecorticate axes with four pericentral cells, attached by unicellular rhizoids remaining in open connection with pericentral cells. Prostrate axes lack vegetative trichoblasts; trichoblasts occur seasonally on erect axes. Branch initials are cut off from the subapical cell at intervals of four or five segments in dichotomous and alternating pairs rather than being formed horn each axial cell in the spiral pattern typical of most species of Polysiphonia. Spermatangial branch initials, which are trichoblast homologues, are produced directly from each axial cell at the tips of erect branches, not subtended by trichoblasts, and have two- to five-celled sterile tips when mature. The mature carpogonial branch is four-celled with a two-celled first sterile group and a one-celled second sterile group. Following presumed fertilization, direct fusion apparently takes place between carpogonium and auxiliary tell; mature cystocarps are usually urceolate. Tetrasporangia are formed from the third pericentral cell, in straight series, and have two pre-sporangial cover cells. Previous accounts of a third, post-sporangial cover cell could not be substantiated. P. stricta and a small group of other Polysiphonia species differ in several important respects from most members of the genus, which have rhizoids cut off from pericentral cells by a cell division, abundant trichoblasts, spirally arranged tetrasporangia and a post-sporangial cover cell. The branching pattern of P. stricta highlights the difficulties of distinguishing between the tribes Polysiphonieae and Pterosiphonieae.
Resumo:
This study describes the isolation and structural determination of two amides, isolated for the first time: N,4-dihydroxy-N-(2'-hydroxyethyl)-benzamide (0.019%) and N, 4-dihydroxy-N-(2'-hydroxyethyl)-benzeneacetamide (0.023%). These amides, produced by the red macroalgae Bostrychia radicans, had their structures assigned by NMR spectral data and MS analyses. In addition, this chemical study led to the isolation of cholesterol, heptadecane, squalene, trans-phytol, neophytadiene, tetradecanoic and hexadecanoic acids, methyl hexadecanoate and methyl 9-octadecenoate, 4-(methoxymethyl)-phenol, 4-hydroxybenzaldehyde, methyl 4-hydroxybenzeneacetate, methyl 2-hydroxy-3-(4-hydroxyphenyl)-propanoate, hydroquinone, methyl 4-hydroxymandelate, methyl 4-hydroxybenzoate, 4-hydroxybenzeneacetic acid and (4-hydroxyphenyl)-oxo-acetaldehyde. This is the first report concerning these compounds in B. radicans, contributing by illustrating the chemical diversity within the Rhodomelaceae family.
Resumo:
This study describes the isolation and structural determination of two amides, isolated for the first time: N,4-dihydroxy-N-(2'-hydroxyethyl)-benzamide (0.019%) and N,4-dihydroxy-N-(2'-hydroxyethyl)-benzeneacetamide (0.023%). These amides, produced by the red macroalgae Bostrychia radicans, had their structures assigned by NMR spectral data and MS analyses. In addition, this chemical study led to the isolation of cholesterol, heptadecane, squalene, trans-phytol, neophytadiene, tetradecanoic and hexadecanoic acids, methyl hexadecanoate and methyl 9-octadecenoate, 4-(methoxymethyl)-phenol, 4-hydroxybenzaldehyde, methyl 4-hydroxybenzeneacetate, methyl 2-hydroxy-3-(4-hydroxyphenyl)-propanoate, hydroquinone, methyl 4-hydroxymandelate, methyl 4-hydroxybenzoate, 4-hydroxybenzeneacetic acid and (4-hydroxyphenyl)-oxo-acetaldehyde. This is the first report concerning these compounds in B. radicans, contributing by illustrating the chemical diversity within the Rhodomelaceae family.
Resumo:
Morphological and molecular studies were carried out on Laurencia oliveirana from the type locality (Arraial do Cabo, Rio de Janeiro, Brazil). This species is easily recognized by its small size, sub-erect habit forming intricate cushion-like tufts and unilateral pectinate branching. The species displays all the typical characters of the genus Laurencia, such as the production of the first pericentral cell underneath the basal cell of the trichoblast, tetrasporangia produced from particular pericentral cells, with the third and fourth pericentral cells becoming fertile, without production of additional pericentral cells, spermatangial branches produced from one of two laterals on the suprabasal cell of trichoblasts, and procarp-bearing segment with five pericentral cells. Details of tetrasporangial plants and development of procarp and male plants are described for the first time for the species. The phylogenetic position of L. oliveirana was inferred by analysis of the chloroplast-encoded rbcL gene sequences from 57 taxa. In all phylogenetic analyses, L. oliveirana grouped with L. caraibica, L. caduciramulosa, L. venusta and L. natalensis, forming a monophyletic clade within the Laurencia sensu stricto. The genetic divergence between L. oliveirana and the molecularly closest species, L. caraiba collected in Brazil, was 2.3%.