13 resultados para RHIZOTOMY
Resumo:
PURPOSE: To identify MRI characteristics that may predict the functional effect of selective dorsal rhizotomy (SDR) in children with bilateral spastic paresis. METHODS: We performed SDR in a group of 36 patients. The gross motor functioning measure-66 (GMFM-66) was applied before and after SDR. Available cerebral MRIs were retrospectively classified into three diagnostic groups: periventricular leucomalacia (PVL; n = 10), hydrocephalus (n = 2), and normal (n = 6). In patients with PVL, we scored the severity of the MR abnormalities. We compared the changes in the GMFM-66 after SDR in the diagnostic groups. In patients with PVL, we correlated the severity of the MR abnormalities with the changes in the GMFM-66. RESULTS: The mean follow-up period was 5 years and 4 months (range, 1 year and 1 month to 9 years). The best improvement in gross motor function was observed in patients with normal MRI, and the slightest improvement was observed in patients with hydrocephalus. The severity of the PVL did correlate with the GMFM-66 score before SDR but not with the functional effect of SDR. CONCLUSION: We conclude that with respect to gross motor skills, the improvements after SDR are good in patients with no MRI abnormalities. In the patients with hydrocephalus, the improvements after SDR were insignificant. In patients with PVL, the improvements were intermediate and did not correlate with the degree of PVL.
Resumo:
Selective dorsal rhizotomy (SDR) is an effective treatment for reducing spasticity and improving gait in children with spastic cerebral palsy. Data concerning muscle activity changes after SDR treatment are limited.
Resumo:
To assess the long-term outcome and adverse events of selective dorsal rhizotomy (SDR) in children with spastic cerebral palsy (CP).
Resumo:
Selective dorsal rhizotomy at the lumbar level is a neurosurgical procedure, which reduces spasticity in the legs. Its effect has mainly been studied in children with spastic cerebral palsy. Little is known about the outcome of selective dorsal rhizotomy in patients with neurodegenerative disorders. We report the clinical course after selective dorsal rhizotomy in 2 patients with progressive spasticity. Leg spasticity was effectively and persistently reduced in both patients, facilitating care and improving sitting comfort. However, spasticity of the arms and other motor disturbances, such as spontaneous extension spasms and the ataxia, increased gradually in time. Selective dorsal rhizotomy leads to a disappearance of leg spasticity in patients with a neurodegenerative disease. Other motor signs are not influenced and may increase due to the progressive nature of the underlying disease.
Resumo:
AIM Information regarding the selection procedure for selective dorsal rhizotomy (SDR) in children with spastic cerebral palsy (CP) is scarce. Therefore, the aim of this study was to summarize the selection criteria for SDR in children with spastic CP. METHOD A systematic review was carried out using the following databases: MEDLINE, CINAHL, EMBASE, PEDro, and the Cochrane Library. Additional studies were identified in the reference lists. Search terms included 'selective dorsal rhizotomy', 'functional posterior rhizotomy', 'selective posterior rhizotomy', and 'cerebral palsy'. Studies were selected if they studied mainly children (<18y of age) with spastic CP, if they had an intervention of SDR, if they had a detailed description of the selection criteria, and if they were in English. The levels of evidence, conduct of studies, and selection criteria for SDR were scored. RESULTS Fifty-two studies were included. Selection criteria were reported in 16 International Classification of Functioning, Disability and Health model domains including 'body structure and function' (details concerning spasticity [94%], other movement abnormalities [62%], and strength [54%]), 'activity' (gross motor function [27%]), and 'personal and environmental factors' (age [44%], diagnosis [50%], motivation [31%], previous surgery [21%], and follow-up therapy [31%]). Most selection criteria were not based on standardized measurements. INTERPRETATION Selection criteria for SDR vary considerably. Future studies should describe clearly the selection procedure. International meetings of experts should develop more uniform consensus guidelines, which could form the basis for selecting candidates for SDR.
Resumo:
Abstract Object The aim of this study was to evaluate the outcomes of Gamma Knife surgery (GKS) when used for patients with intractable cluster headache (CH). Methods Four participating centers of the North American Gamma Knife Consortium identified 17 patients who underwent GKS for intractable CH between 1996 and 2008. The median patient age was 47 years (range 26-83 years). The median duration of pain before GKS was 10 years (range 1.3-40 years). Seven patients underwent unsuccessful prior surgical procedures, including microvascular decompression (2 patients), microvascular decompression with glycerol rhizotomy (2 patients), deep brain stimulation (1 patient), trigeminal ganglion stimulation (1 patient), and prior GKS (1 patient). Fourteen patients had associated autonomic symptoms. The radiosurgical target was the trigeminal nerve (TN) root and the sphenopalatine ganglion (SPG) in 8 patients, only the TN in 8 patients, and only the SPG in 1 patient. The median maximum TN and SPG dose was 80 Gy. Results Favorable pain relief (Barrow Neurological Institute Grades I-IIIb) was achieved and maintained in 10 (59%) of 17 patients at a median follow-up of 34 months. Three patients required additional procedures (repeat GKS in 2 patients, hypothalamic deep brain stimulation in 1 patient). Eight (50%) of 16 patients who had their TN irradiated developed facial sensory dysfunction after GKS. Conclusions Gamma Knife surgery for intractable, medically refractory CH provided lasting pain reduction in approximately 60% of patients, but was associated with a significantly greater chance of facial sensory disturbances than GKS used for trigeminal neuralgia.
Resumo:
with refractory irritative voiding dysfunction. Following an initial response, patients may successfully apply this treatment themselves to ensure long-term relief. Objective: Patients with irritative voiding dysfunction are often unresponsive to standard clinical treatment. We evaluated the response of such individuals to transcutaneous electrical stimulation of the third sacral nerve. Methods: 32 patients with refractory irritative voiding dysfunction (31 female and 1 male; mean age 47 years) were recruited to the study. Ambulatory transcutaneous electrical neurostimulation was applied bilaterally to the third sacral dermatomes for 1 week. Symptoms of frequency, nocturia, urgency, and bladder pain were scored by each patient throughout and up to 6 months following treatment. Results: The mean daytime frequency was reduced from 11.3 to 7.96 (p = 0.01). Nocturia episodes were reduced from a mean of 2.6 to 1.8 (p = 0.01). Urgency and bladder pain mean symptom scores were reduced from 5.97 to 4.89 and from 1.48 to 0.64, respectively. After stopping therapy, symptoms returned to pretreatment levels within 2 weeks in 40% of the patients and within 6 months in 100%, Three patients who continued with neurostimulation remained satisfied with this treatment modality at 6 months. Conclusions: Transcutaneous third sacral nerve stimulation may be an effective and noninvasive ambulatory technique for the treatment of patients with refractory irritative voiding dysfunction. Following an initial response, patients may successfully apply this treatment themselves to ensure long-term relief.
Resumo:
A severe complication of spinal cord injury is loss of bladder function (neurogenic bladder), which is characterized by loss of bladder sensation and voluntary control of micturition (urination), and spontaneous hyperreflexive voiding against a closed sphincter (detrusor-sphincter dyssynergia). A sacral anterior root stimulator at low frequency can drive volitional bladder voiding, but surgical rhizotomy of the lumbosacral dorsal roots is needed to prevent spontaneous voiding and dyssynergia. However, rhizotomy is irreversible and eliminates sexual function, and the stimulator gives no information on bladder fullness. We designed a closed-loop neuroprosthetic interface that measures bladder fullness and prevents spontaneous voiding episodes without the need for dorsal rhizotomy in a rat model. To obtain bladder sensory information, we implanted teased dorsal roots (rootlets) within the rat vertebral column into microchannel electrodes, which provided signal amplification and noise suppression. As long as they were attached to the spinal cord, these rootlets survived for up to 3 months and contained axons and blood vessels. Electrophysiological recordings showed that half of the rootlets propagated action potentials, with firing frequency correlated to bladder fullness. When the bladder became full enough to initiate spontaneous voiding, high-frequency/amplitude sensory activity was detected. Voiding was abolished using a high-frequency depolarizing block to the ventral roots. A ventral root stimulator initiated bladder emptying at low frequency and prevented unwanted contraction at high frequency. These data suggest that sensory information from the dorsal root together with a ventral root stimulator could form the basis for a closed-loop bladder neuroprosthetic. Copyright © 2013, American Association for the Advancement of Science
Resumo:
The recognition of emissary foramens is important not only for understanding the regional neurovascular anatomy, but also to distinguish normal from potentially abnormal structures. Thus, the aim of this study was to review the literature on anatomical and clinical aspects of the mastoid, parietal and sphenoid emissary foramens. It was found that the emissary foramen presents importance in clinical practice because it acts as a route of spread of extracranial infection to the intracranial structures and also possible complications in neurosurgery, due to its influence in the performance of techniques such as radiofrequency rhizotomy for treatment of trigeminal neuralgia. The anatomical knowledge of the emissary foramens is important due to variability in their incidence in the human skull and its relation to the dura mater sinuses.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The treatment of the Cerebral Palsy (CP) is considered as the “core problem” for the whole field of the pediatric rehabilitation. The reason why this pathology has such a primary role, can be ascribed to two main aspects. First of all CP is the form of disability most frequent in childhood (one new case per 500 birth alive, (1)), secondarily the functional recovery of the “spastic” child is, historically, the clinical field in which the majority of the therapeutic methods and techniques (physiotherapy, orthotic, pharmacologic, orthopedic-surgical, neurosurgical) were first applied and tested. The currently accepted definition of CP – Group of disorders of the development of movement and posture causing activity limitation (2) – is the result of a recent update by the World Health Organization to the language of the International Classification of Functioning Disability and Health, from the original proposal of Ingram – A persistent but not unchangeable disorder of posture and movement – dated 1955 (3). This definition considers CP as a permanent ailment, i.e. a “fixed” condition, that however can be modified both functionally and structurally by means of child spontaneous evolution and treatments carried out during childhood. The lesion that causes the palsy, happens in a structurally immature brain in the pre-, peri- or post-birth period (but only during the firsts months of life). The most frequent causes of CP are: prematurity, insufficient cerebral perfusion, arterial haemorrhage, venous infarction, hypoxia caused by various origin (for example from the ingestion of amniotic liquid), malnutrition, infection and maternal or fetal poisoning. In addition to these causes, traumas and malformations have to be included. The lesion, whether focused or spread over the nervous system, impairs the whole functioning of the Central Nervous System (CNS). As a consequence, they affect the construction of the adaptive functions (4), first of all posture control, locomotion and manipulation. The palsy itself does not vary over time, however it assumes an unavoidable “evolutionary” feature when during growth the child is requested to meet new and different needs through the construction of new and different functions. It is essential to consider that clinically CP is not only a direct expression of structural impairment, that is of etiology, pathogenesis and lesion timing, but it is mainly the manifestation of the path followed by the CNS to “re”-construct the adaptive functions “despite” the presence of the damage. “Palsy” is “the form of the function that is implemented by an individual whose CNS has been damaged in order to satisfy the demands coming from the environment” (4). Therefore it is only possible to establish general relations between lesion site, nature and size, and palsy and recovery processes. It is quite common to observe that children with very similar neuroimaging can have very different clinical manifestations of CP and, on the other hand, children with very similar motor behaviors can have completely different lesion histories. A very clear example of this is represented by hemiplegic forms, which show bilateral hemispheric lesions in a high percentage of cases. The first section of this thesis is aimed at guiding the interpretation of CP. First of all the issue of the detection of the palsy is treated from historical viewpoint. Consequently, an extended analysis of the current definition of CP, as internationally accepted, is provided. The definition is then outlined in terms of a space dimension and then of a time dimension, hence it is highlighted where this definition is unacceptably lacking. The last part of the first section further stresses the importance of shifting from the traditional concept of CP as a palsy of development (defect analysis) towards the notion of development of palsy, i.e., as the product of the relationship that the individual however tries to dynamically build with the surrounding environment (resource semeiotics) starting and growing from a different availability of resources, needs, dreams, rights and duties (4). In the scientific and clinic community no common classification system of CP has so far been universally accepted. Besides, no standard operative method or technique have been acknowledged to effectively assess the different disabilities and impairments exhibited by children with CP. CP is still “an artificial concept, comprising several causes and clinical syndromes that have been grouped together for a convenience of management” (5). The lack of standard and common protocols able to effectively diagnose the palsy, and as a consequence to establish specific treatments and prognosis, is mainly because of the difficulty to elevate this field to a level based on scientific evidence. A solution aimed at overcoming the current incomplete treatment of CP children is represented by the clinical systematic adoption of objective tools able to measure motor defects and movement impairments. A widespread application of reliable instruments and techniques able to objectively evaluate both the form of the palsy (diagnosis) and the efficacy of the treatments provided (prognosis), constitutes a valuable method able to validate care protocols, establish the efficacy of classification systems and assess the validity of definitions. Since the ‘80s, instruments specifically oriented to the analysis of the human movement have been advantageously designed and applied in the context of CP with the aim of measuring motor deficits and, especially, gait deviations. The gait analysis (GA) technique has been increasingly used over the years to assess, analyze, classify, and support the process of clinical decisions making, allowing for a complete investigation of gait with an increased temporal and spatial resolution. GA has provided a basis for improving the outcome of surgical and nonsurgical treatments and for introducing a new modus operandi in the identification of defects and functional adaptations to the musculoskeletal disorders. Historically, the first laboratories set up for gait analysis developed their own protocol (set of procedures for data collection and for data reduction) independently, according to performances of the technologies available at that time. In particular, the stereophotogrammetric systems mainly based on optoelectronic technology, soon became a gold-standard for motion analysis. They have been successfully applied especially for scientific purposes. Nowadays the optoelectronic systems have significantly improved their performances in term of spatial and temporal resolution, however many laboratories continue to use the protocols designed on the technology available in the ‘70s and now out-of-date. Furthermore, these protocols are not coherent both for the biomechanical models and for the adopted collection procedures. In spite of these differences, GA data are shared, exchanged and interpreted irrespectively to the adopted protocol without a full awareness to what extent these protocols are compatible and comparable with each other. Following the extraordinary advances in computer science and electronics, new systems for GA no longer based on optoelectronic technology, are now becoming available. They are the Inertial and Magnetic Measurement Systems (IMMSs), based on miniature MEMS (Microelectromechanical systems) inertial sensor technology. These systems are cost effective, wearable and fully portable motion analysis systems, these features gives IMMSs the potential to be used both outside specialized laboratories and to consecutive collect series of tens of gait cycles. The recognition and selection of the most representative gait cycle is then easier and more reliable especially in CP children, considering their relevant gait cycle variability. The second section of this thesis is focused on GA. In particular, it is firstly aimed at examining the differences among five most representative GA protocols in order to assess the state of the art with respect to the inter-protocol variability. The design of a new protocol is then proposed and presented with the aim of achieving gait analysis on CP children by means of IMMS. The protocol, named ‘Outwalk’, contains original and innovative solutions oriented at obtaining joint kinematic with calibration procedures extremely comfortable for the patients. The results of a first in-vivo validation of Outwalk on healthy subjects are then provided. In particular, this study was carried out by comparing Outwalk used in combination with an IMMS with respect to a reference protocol and an optoelectronic system. In order to set a more accurate and precise comparison of the systems and the protocols, ad hoc methods were designed and an original formulation of the statistical parameter coefficient of multiple correlation was developed and effectively applied. On the basis of the experimental design proposed for the validation on healthy subjects, a first assessment of Outwalk, together with an IMMS, was also carried out on CP children. The third section of this thesis is dedicated to the treatment of walking in CP children. Commonly prescribed treatments in addressing gait abnormalities in CP children include physical therapy, surgery (orthopedic and rhizotomy), and orthoses. The orthotic approach is conservative, being reversible, and widespread in many therapeutic regimes. Orthoses are used to improve the gait of children with CP, by preventing deformities, controlling joint position, and offering an effective lever for the ankle joint. Orthoses are prescribed for the additional aims of increasing walking speed, improving stability, preventing stumbling, and decreasing muscular fatigue. The ankle-foot orthosis (AFO), with a rigid ankle, are primarily designed to prevent equinus and other foot deformities with a positive effect also on more proximal joints. However, AFOs prevent the natural excursion of the tibio-tarsic joint during the second rocker, hence hampering the natural leaning progression of the whole body under the effect of the inertia (6). A new modular (submalleolar) astragalus-calcanear orthosis, named OMAC, has recently been proposed with the intention of substituting the prescription of AFOs in those CP children exhibiting a flat and valgus-pronated foot. The aim of this section is thus to present the mechanical and technical features of the OMAC by means of an accurate description of the device. In particular, the integral document of the deposited Italian patent, is provided. A preliminary validation of OMAC with respect to AFO is also reported as resulted from an experimental campaign on diplegic CP children, during a three month period, aimed at quantitatively assessing the benefit provided by the two orthoses on walking and at qualitatively evaluating the changes in the quality of life and motor abilities. As already stated, CP is universally considered as a persistent but not unchangeable disorder of posture and movement. Conversely to this definition, some clinicians (4) have recently pointed out that movement disorders may be primarily caused by the presence of perceptive disorders, where perception is not merely the acquisition of sensory information, but an active process aimed at guiding the execution of movements through the integration of sensory information properly representing the state of one’s body and of the environment. Children with perceptive impairments show an overall fear of moving and the onset of strongly unnatural walking schemes directly caused by the presence of perceptive system disorders. The fourth section of the thesis thus deals with accurately defining the perceptive impairment exhibited by diplegic CP children. A detailed description of the clinical signs revealing the presence of the perceptive impairment, and a classification scheme of the clinical aspects of perceptual disorders is provided. In the end, a functional reaching test is proposed as an instrumental test able to disclosure the perceptive impairment. References 1. Prevalence and characteristics of children with cerebral palsy in Europe. Dev Med Child Neurol. 2002 Set;44(9):633-640. 2. Bax M, Goldstein M, Rosenbaum P, Leviton A, Paneth N, Dan B, et al. Proposed definition and classification of cerebral palsy, April 2005. Dev Med Child Neurol. 2005 Ago;47(8):571-576. 3. Ingram TT. A study of cerebral palsy in the childhood population of Edinburgh. Arch. Dis. Child. 1955 Apr;30(150):85-98. 4. Ferrari A, Cioni G. The spastic forms of cerebral palsy : a guide to the assessment of adaptive functions. Milan: Springer; 2009. 5. Olney SJ, Wright MJ. Cerebral Palsy. Campbell S et al. Physical Therapy for Children. 2nd Ed. Philadelphia: Saunders. 2000;:533-570. 6. Desloovere K, Molenaers G, Van Gestel L, Huenaerts C, Van Campenhout A, Callewaert B, et al. How can push-off be preserved during use of an ankle foot orthosis in children with hemiplegia? A prospective controlled study. Gait Posture. 2006 Ott;24(2):142-151.