990 resultados para RESTRICTION-ENDONUCLEASE ANALYSIS
Resumo:
Bovine adenovirus type 3 (BAV3) is a medium size DNA virus that causes respiratory and gastrointestinal disorders in cattle. The viral genome consists of a 35,000 base pair, linear, double-stranded DNA molecule with inverted terminal repeats and a 55 kilodalton protein covalently linked to each of the 5' ends. In this study, the viral genome was cloned in the form of subgenomic restriction fragments. Five EcoRI internal fragments spanning 3.4 to 89.0 % and two Xb a I internal fragments spanning 35.7 to 82.9 % of the viral genome were cloned into the EcoRI and Xbal sites of the bacterial vector pUC19. To generate overlap between cloned fragments, ten Hi n dIll internal fragments spanning 3.9 to 84.9 and 85.5 to 96% and two BAV3 BamHI internal fragments spanning 59.8 to 84.9% of the viral genome were cloned into the HindllI and BamHI sites of pUC19. The HindlII cloning strategy also resulted in six recombinant plasmids carrying two or more Hi ndII I fragments. These fragments provided valuable information on the linear orientation of the cloned fragments within the viral genome. Cloning of the terminal fragments required the removal of the residual peptides that remain attached to the 5' ends of the genome. This was accomplished by alkaline hydrolysis of the DNA-peptide bond. BamH I restriction fragments of the peptide-free DNA were cloned into pUC19 and resulted in two plasmids carrying the BAV3 Bam HI terminal fragments spanning 0 to 53.9% and 84.9 to 100% of the viral genome.
Resumo:
We have devised a combinatorial method, restriction endonuclease protection selection and amplification (REPSA), to identify consensus ligand binding sequences in DNA. In this technique, cleavage by a type IIS restriction endonuclease (an enzyme that cleaves DNA at a site distal from its recognition sequence) is prevented by a bound ligand while unbound DNA is cleaved. Since the selection step of REPSA is performed in solution under mild conditions, this approach is amenable to the investigation of ligand-DNA complexes that are either insufficiently stable or not readily separable by other methods. Here we report the use of REPSA to identify the consensus duplex DNA sequence recognized by a G/T-rich oligodeoxyribonucleotide under conditions favoring purine-motif triple-helix formation. Analysis of 47 sequences indicated that recognition between 13 bases on the oligonucleotide 3' end and the duplex DNA was sufficient for triplex formation and indicated the possible existence of a new base triplet, G.AT. This information should help identify appropriate target sequences for purine-motif triplex formation and demonstrates the power of REPSA for investigating ligand-DNA interactions.
Resumo:
Type II restriction endonucleases are dimers of two identical subunits that together form one binding site for the double-stranded DNA substrate. Cleavage within the palindromic recognition site occurs in the two strands of the duplex in a concerted manner, due to the action of two catalytic centers, one per subunit. To investigate how the two identical subunits of the restriction endonuclease EcoRV cooperate in binding and cleaving their substrate, heterodimeric versions of EcoRV with different amino acid substitutions in the two subunits were constructed. For this purpose, the ecorV gene was fused to the coding region for the glutathione-binding domain of the glutathione S-transferase and a His6-tag, respectively. Upon cotransformation of Escherichia coli cells with both gene fusions stable homo- and heterodimers of the EcoRV variants are produced, which can be separated and purified to homogeneity by affinity chromatography over Ni-nitrilotriacetic acid and glutathione columns. A steady-state kinetic analysis shows that the activity of a heterodimeric variant with one inactive catalytic center is decreased by 2-fold, demonstrating that the two catalytic centers operate independently from each other. In contrast, heterodimeric variants with a defect in one DNA-binding site have a 30- to 50-fold lower activity, indicating that the two subunits of EcoRV cooperate in the recognition of the palindromic DNA sequence. By combining a subunit with an inactive catalytic center with a subunit with a defect in the DNA-binding site, EcoRV heterodimers were produced that only nick DNA specifically within the EcoRV recognition sequence.
Resumo:
We have developed a surface mounting technology for the rapid construction of ordered restriction maps from individual DNA molecules. Optical restriction maps constructed from yeast artificial chromosome DNA molecules mounted on specially derivatized glass surfaces are accurate and reproducible, and the technology is amenable to automation. The mounting procedures described here should also be useful for fluorescence in situ hybridization studies. We believe these improvements to optical mapping will further stimulate the development of nonelectrophoretic approaches to genome analysis.
Resumo:
More than 70 species of mycobacteria have been defined, and some can cause disease in humans, especially in immunocompromised patients. Species identification in most clinical laboratories is based on phenotypic characteristics and biochemical tests and final results are obtained only after two to four weeks. Quick identification methods, by reducing time for diagnosis, could expedite institution of specific treatment, increasing chances of success. PCR restriction-enzyme analysis (PRA) of the hsp65 gene was used as a rapid method for identification of 103 clinical isolates. Band patterns were interpreted by comparison with published tables and patterns available at an Internet site (http://www.hospvd.ch:8005). Concordant results of PRA and biochemical identification were obtained in 76 out of 83 isolates (91.5%). Results from 20 isolates could not be compared due to inconclusive PRA or biochemical identification. The results of this work showed that PRA could improve identification of mycobacteria in a routine setting because it is accurate, fast, and cheaper than conventional phenotypic identification.
Resumo:
INTRODUCTION: Human cytomegalovirus is an opportunistic betaherpesvirus that causes persistent and serious infections in immunodeficient patients. Recurrent infections occur due to the presence of the virus in a latent state in some cell types. It is possible to examine the virus using molecular methods to aid in the immunological diagnosis and to generate a molecular viral profile in immunodeficient patients. The objective of this study was to characterize cytomegalovirus genotypes and to generate the epidemiological and molecular viral profile in immunodeficient patients. METHODS: A total of 105 samples were collected from immunodeficient patients from the City of Belém, including newborns, hemodialysis patients, transplant recipients and HIV+ patients. An IgG and IgM antibody study was completed using ELISA, and enzymatic analysis by restriction fragment length polymorphism (RFLP) was performed to characterize viral genotypes. RESULTS: It was observed that 100% of the patients had IgG antibodies, 87% of which were IgG+/IgM-, consistent with a prior infection profile, 13% were IgG+/IgM+, suggestive of recent infection. The newborn group had the highest frequency (27%) of the IgG+/IgM+ profile. By RFLP analysis, only one genotype was observed, gB2, which corresponded to the standard AD169 strain. CONCLUSIONS: The presence of IgM antibodies in new borns indicates that HCMV continues to be an important cause of congenital infection. The low observed genotypic diversity could be attributed to the small sample size because newborns were excluded from the RFLP analysis. This study will be continued including samples from newborns to extend the knowledge of the general and molecular epidemiology of HCMV in immunodeficient patients.
Resumo:
Adenoviruses are non-enveloped icosahedral-shaped particles which possess a double-stranded DNA genome. Currently, nearly 100 serotypes of adenoviruses have been identified, 48 of which are of human origin. Bovine adenoviruses (BAVs), causing both mild respiratory and/or enteral diseases in cattle, have been reported in many countries all over the world. Currently, nine serotypes of SAVs have been isolated which have been placed into two subgroups based on a number of characteristics which include complement fixation tests as well as the ability to replicate in various cell lines. Bovine adenovirus type 2 (BAV2), belonging to subgroup I, is able to cause pneumonia as well as pneumonic-like symptoms in calves. In this study, the genome of BAV2 (strain No. 19) was subcloned into the plasmid vector pUC19. In total, 16 plasmids were constructed; three carry internal San fragments (spanning 3.1 to 65.2% ), and 10 carry internal Pstl fragments (spanning 4.9 to 97.4%), of the viral genome. Each of these plasmids was analyzed using twelve restriction endonucleases; BamHI, CiaI, EcoRl, HiOOlll, Kpnl, Noll, NS(N, Ps~, Pvul, Saj, Xbal, and Xhol. Terminal end fragments were also cloned and analyzed, sUbsequent to the removal of the 5' terminal protein, in the form of 2 BamHI B fragments, cloned in opposite orientations (spanning 0 to 18.1°k), and one Pstll fragment (spanning 97.4 to 1000/0). These cloned fragments, along with two other plasmids previously constructed carrying internal EcoRI fragments (spanning 20.6 to 90.5%), were then used to construct a detailed physical restriction map using the twelve restriction endonucleases, as well as to estimate the size of the genome for BAV2(32.5 Kbp). The DNA sequences of the early region 1 (E1) and hexon-associated gene (protein IX) have also been determined. The amino acid sequences of four open reading frames (ORFs) have been compared to those of the E1 proteins and protein IX from other Ads.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present work realized a comparative study in meiosis of two triatomines, Panstrongylus herreri and P. megistus, by cytogenetic techniques involving the restriction endonucleases Hae III and Alu I and C-banding. The system of sex chromosomes in Panstrongylus is of the X1X2Y type, and experiments corroborated the common origin hypothesis of the X chromosomes by fragmentation of single X. In both species the restriction endonucleases (RE) presented banding patterns in part similar to C-banding. However, in some early meiotic phases it was possible to verify differentiation of the heterochromatic pattern. This work suggests that other elements besides presence of recognition sites, such as chromatin packing degree and DNA-protein interaction, act in RE results, since digestion patterns occur in early spermatogenesis. However, metaphase chromosomes were practically inaccessible to the endonucleases.
Resumo:
Abstract Background Identification of nontuberculous mycobacteria (NTM) based on phenotypic tests is time-consuming, labor-intensive, expensive and often provides erroneous or inconclusive results. In the molecular method referred to as PRA-hsp65, a fragment of the hsp65 gene is amplified by PCR and then analyzed by restriction digest; this rapid approach offers the promise of accurate, cost-effective species identification. The aim of this study was to determine whether species identification of NTM using PRA-hsp65 is sufficiently reliable to serve as the routine methodology in a reference laboratory. Results A total of 434 NTM isolates were obtained from 5019 cultures submitted to the Institute Adolpho Lutz, Sao Paulo Brazil, between January 2000 and January 2001. Species identification was performed for all isolates using conventional phenotypic methods and PRA-hsp65. For isolates for which these methods gave discordant results, definitive species identification was obtained by sequencing a 441 bp fragment of hsp65. Phenotypic evaluation and PRA-hsp65 were concordant for 321 (74%) isolates. These assignments were presumed to be correct. For the remaining 113 discordant isolates, definitive identification was based on sequencing a 441 bp fragment of hsp65. PRA-hsp65 identified 30 isolates with hsp65 alleles representing 13 previously unreported PRA-hsp65 patterns. Overall, species identification by PRA-hsp65 was significantly more accurate than by phenotype methods (392 (90.3%) vs. 338 (77.9%), respectively; p < .0001, Fisher's test). Among the 333 isolates representing the most common pathogenic species, PRA-hsp65 provided an incorrect result for only 1.2%. Conclusion PRA-hsp65 is a rapid and highly reliable method and deserves consideration by any clinical microbiology laboratory charged with performing species identification of NTM.
Resumo:
Novel restriction enzymes can be created by fusing the nuclease domain of FokI endonuclease with defined DNA binding domains. Recently, we have characterized a domain (Zα) from the N-terminal region of human double-stranded RNA adenosine deaminase (hADAR1), which binds the Z-conformation with high specificity. Here we report creation of a conformation-specific endonuclease, Zα nuclease, which is a chimera of Zα and FokI nuclease. Purified Zα nuclease cleaves negatively supercoiled plasmids only when they contain a Z-DNA forming insert, such as (dC-dG)13. The precise location of the cleavage sites was determined by primer extension. Cutting has been mapped to the edge of the B-Z junction, suggesting that Zα nuclease binds within the Z-DNA insert, but cleaves in the nearby B-DNA, by using a mechanism similar to type IIs restriction enzymes. These data show that Zα binds Z-DNA in an environment similar to that in a cell. Zα nuclease, a structure-specific restriction enzyme, may be a useful tool for further study of the biological role of Z-DNA.
Resumo:
Although 1–24% of T cells are alloreactive, i.e., respond to MHC molecules encoded by a foreign haplotype, it is generally believed that T cells cannot recognize foreign peptides binding foreign MHC molecules. We show using a quantitative model that, if T cell selection and activation are affinity-driven, then an alloreactivity of 1–24% is incompatible with the textbook notion that self MHC restriction is absolute. If an average of 1% of clones are alloreactive, then according to our model, at most 20-fold more clones should, on average, be activated by antigens presented on self MHC than by antigens presented on foreign MHC. This ratio is at best 5 if alloreactivity is 5%. These results describe average properties of the murine immune system, but not the outcome of individual experiments. Using supercomputer technology, we simulated 100,000 MHC restriction experiments. Although the average restriction ratio was 7.1, restriction was absolute in 10% of the simulated experiments, greater than 100, although not absolute, in 29%, and below 6 in 24%. This extreme variability agrees with experimental estimates. Our analysis suggests that alloreactivity and average self MHC restriction both cannot be high, but that a low average restriction level is compatible with high levels in a significant number of experiments.
OliI, a unique restriction endonuclease that recognizes the discontinuous sequence 5′-CACNN↓NNGTG-3′
Resumo:
A new type II restriction endonuclease designated OliI has been partially purified from the halophilic bacterium Oceanospirillum linum 4-5D. OliI recognizes the interrupted hexanucleotide palindrome 5′-CACNN↓NNGTG-3′ and cleaves it in the center generating blunt-ended DNA fragments.
Resumo:
Two longitudinal experiments involving Merino sheep challenged with either bovine or ovine strains of Mycobacterium avium subsp. paratuberculosis (Map) have been conducted over a period of 54 and 35 months, respectively. Blood samples for the interferon-gamma test, the absorbed ELISA and faecal samples for bacteriological culture were taken pre-challenge and monthly post-challenge. Infections were induced with either a bovine or ovine strain of Map in separate experiments with infections being more easily established, in terms of faecal bacterial shedding and clinical disease when the challenge inoculum was prepared from gut mucosal tissue than cultured bacteria. The patterns of response for shedding and clinical disease were similar. Cell-mediated immune responses were proportionally elevated by at least an order of magnitude in all sheep dosed with either a bovine or ovine strain of Map. Conversely, antibody responses were only elevated in a relatively small proportion of infected sheep. Neither of the clinically affected tissue challenged sheep developed an antibody response despite the presence of persistent shedding and the development and decline in cell-mediated immunity. The results indicated that for sheep the interferon-gamma test may be useful for determining if a flock has been exposed to ovine Johne's disease. (C) 2004 Elsevier B.V. All rights reserved.