973 resultados para RESIN SOLVATION
Resumo:
Resin solvation properties affect the efficiency of the coupling reactions in solid-phase peptide synthesis. Here we report a novel approach to evaluate resin solvation properties, making use of spin label electron paramagnetic resonance (EPR) spectroscopy. The aggregating VVLGAAIV and ING sequences were assembled in benzhydrylamine-resin with different amino group contents (up to 2.6 mmol/g) to examine the extent of chain association within the beads. These model peptidyl-resins were first labeled at their N-terminus with the amino acid spin label 2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic acid (Toac). Their solvation properties in different solvents were estimated, either by bead swelling measurement or by assessing the dynamics of their polymeric matrixes through the analysis of Toac EPR spectra, and were correlated with the yield of the acylation reaction. In most cases the coupling rate was found to depend on bead swelling. Comparatively, the EPR approach was more effective. Line shape analysis allowed the detection of more than one peptide chain population, which influenced the reaction. The results demonstrated the unique potential of EPR spectroscopy not only for improving the yield of peptide synthesis, even in challenging conditions, but also for other relevant polymer-supported methodologies in chemistry and biology.
Resumo:
In spite of all progressive efforts aiming to optimize SPPS, serious problems mainly affecting the assembly of aggregating sequences have persisted. Following the study intended to unravel the complex solvation phenomenon of peptide-resin beads, the XING and XAAAA model aggregating segments were labeled with a paramagnetic probe and studied via EPR spectroscopy. Low and high substituted resins were also comparatively used, with the X residue being Asx or Glx containing the main protecting groups used in the SPPS. Notably, the cyclo-hexyl group used for Asp and Glu residues in Boc-chemistry induced greater chain immobilization than its tert-butyl partner-protecting group of the Fmoc strategy. Otherwise, the most impressive peptide chain immobilization occurred when the large trytil group was used for Asn and Gln protection in Fmoc-chemistry. These surprising results thus seem to stress the possibility of the relevant influence of the amino-acid side chain protecting groups in the overall peptide synthesis yield. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Based on solvation studies of polymers, the sum (1: 1) of the electron acceptor (AN) and electron donor (DN) values of solvents has been proposed as an alternative polarity scale. To test this, the electron paramagnetic resonance isotropic hyperfine splitting constant, a parameter known to be dependent on the polarity/proticity of the medium, was correlated with the (AN+DN) term using three paramagnetic probes. The linear regression coefficient calculated for 15 different solvents was approximately 0.9, quite similar to those of other well-known polarity parameters, attesting to the validity of the (AN+DN) term as a novel ""two-parameter"" solvent polarity scale.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The solvation properties of model resin and peptide-resins measured in ca. 30 solvent systems correlated better with the sum of solvent electron acceptor (AN) and electron donor (DN) numbers, in 1:1 proportion, than with other solvent polarity parameters. The high sensitivity of the (AN+DN) term to detect differentiated solvation behaviors of peptide-resins, taken as model of heterogeneous and complex solutes, seems to be in agreement with the previously proposed two-parameter model, where the sum of the Lewis acidity and Lewis basicity characters of solvent are proposed for scaling solvent effect. Besides these physicochemical aspects regarding solute-solvent interactions, important implications of this study for the solid phase peptide synthesis were also observed. Each class of peptide-resin displayed a specific salvation profile that was dependent on the amount and the nature of the resin-bound peptide sequence. Plots of resin swelling versus solvent (AN+DN) values allowed the visualization of a maximum salvation region characteristic for each class of resin. This strategy facilitates the selection of solvent systems for optimal solvation conditions of peptide chains in every step of the entire synthesis cycle. Moreover, only the AN and DN concepts allow the understanding of rules for solvation/shrinking of peptide-resins when in homogeneous or in heterogeneous mixed solvents.
Resumo:
An EPR approach to monitor peptide chain aggregation inside resin beads is introduced. Model low and highly peptide-loaded resins containing an aggregating sequence were labeled with a paramagnetic amino acid derivative and studied with regard to their solvation behavior in different solvent systems. For the first time in the peptide synthesis, EPR spectroscopic has allowed the detection of differentiated levels of peptide chain aggregation as a function of solvent and resin loading. (C) 1997, Elsevier B.V. Ltd. All rights reserved.
Resumo:
To evaluate the surface roughness of acrylic resin submitted to chemical disinfection via 1% sodium hypochlorite (NaClO) or 1% peracetic acid (C2H4O3). The disc-shaped resin specimens (30 mm diameter ×4 mm height) were polymerized by heated water using two cycles (short cycle: 1 h at 74°C and 30 min at 100°C; conventional long cycle: 9 h at 74°C). The release of substances by these specimens in water solution was also quantified. Specimens were fabricated, divided into four groups (n = 10) depending on the polymerization time and disinfectant. After polishing, the specimens were stored in distilled deionized water. Specimens were immersed in 1% NaClO or 1% C2H4O3 for 30 min, and then were immersed in distilled deionized water for 20 min. The release of C2H4O3 and NaClO was measured via visual colorimetric analysis. Roughness was measured before and after disinfection. Roughness data were subjected to two-way ANOVA and Tukey's test. There was no interaction between polymerization time and disinfectant in influencing the average surface roughness (Ra, P = 0.957). Considering these factors independently, there were significant differences between short and conventional long cycles (P = 0.012), but no significant difference between the disinfectants hypochlorite and C2H4O3 (P = 0.366). Visual colorimetric analysis did not detect release of substances. It was concluded that there was the difference in surface roughness between short and conventional long cycles, and disinfection at acrylic resins polymerized by heated water using a short cycle modified the properties of roughness.
Resumo:
The aim of this study was to evaluate the degree of conversion (DC) and the cytotoxicity of photo-cured experimental resin composites containing 4-(N,N-dimethylamino)phenethyl alcohol (DMPOH) combined to the camphorquinone (CQ) compared with ethylamine benzoate (EDAB). The resin composites were mechanically blended using 35 wt% of an organic matrix and 65 wt% of filler loading. To this matrix was added 0.2 wt% of CQ and 0.2 wt% of one of the reducing agents tested. 5x1 mm samples (n=5) were previously submitted to DC measurement and then pre-immersed in complete culture medium without 10% (v/v) bovine serum for 1 h or 24 h at 37 °C in a humidifier incubator with 5% CO2 and 95% humidity to evaluate the cytotoxic effects of experimental resin composites using the MTT assay on immortalized human keratinocytes cells. As a result of absence of normal distribution, the statistical analysis was performed using the nonparametric Kruskal-Wallis to evaluate the cytotoxicity and one-way analysis of variance to evaluate the DC. For multiple comparisons, cytotoxicity statistical analyses were submitted to Student-Newman-Keuls and DC analysis to Tukey's HSD post-hoc test (=0.05). No significant differences were found between the DC of DMPOH (49.9%) and EDAB (50.7%). 1 h outcomes showed no significant difference of the cell viability between EDAB (99.26%), DMPOH (94.85%) and the control group (100%). After 24 h no significant difference were found between EDAB (48.44%) and DMPOH (38.06%), but significant difference was found compared with the control group (p>0.05). DMPOH presented similar DC and cytotoxicity compared with EDAB when associated with CQ.
Resumo:
The present study aimed to compare the fluoride (F-) release pattern of a nanofilled resin-modified glass ionomer cement (GIC) (Ketac N100 - KN) with available GICs used in dental practice (resin-modified GIC - Vitremer - V; conventional GIC - Ketac Molar - KM) and a nanofilled resin composite (Filtek Supreme - RC). Discs of each material (n=6) were placed into 4 mL of deionized water in sealed polyethylene vials and shaken, for 15 days. F- release (μg F-/cm²) was measured each day using a fluoride-ion specific electrode. Cumulative F- release means were statistically analyzed by linear regression analysis. In order to analyze the differences among materials and the influence of time in the daily F- release, 2-way ANOVA test was performed (α=0.05). The linear fits between the cumulative F- release profiles of RC and KM and time were weak. KN and V presented a strong relationship between cumulative F- release and time. There were significant differences between the daily F- release overtime up to the third day only for GICs materials. The daily F- release means for RC were similar overtime. The results indicate that the F- release profile of the nanofilled resin-modified GIC is comparable to the resin-modified GIC.
Resumo:
This study evaluated the fracture resistance of weakened roots restored with glass fiber posts, composite resin cores and complete metal crowns. Thirty maxillary canines were randomly divided into 3 groups of 10 teeth each: teeth without weakened roots (control); teeth with partially weakened roots (PWR) and teeth with and largely weakened roots (LWR). The control group was restored with glass fiber posts and a composite resin core. Teeth in the PWR and LWR groups were flared internally to standardized dimensions in order to simulate root weakness. Thereafter, the roots were partially filled with composite resin and restored in the same way as in the control group. The specimens were exposed to 250,000 cycles in a controlled chewing simulator. All intact specimens were subjected to a static load (N) in a universal testing machine at 45 degrees to the long axis of the tooth until failure. Data were analyzed by one-way ANOVA and Dunnett's test for multiple comparisons (p=0.05). There were statistically significant difference differences (p<0.01) among the groups (control group = 566.73 N; PWR = 409.64 N; and LWR = 410.91 N), with significantly higher fracture strength for the control group. There was no statistically significant difference (p>0.05) between the weakened groups. The results of this study showed that thicker root dentin walls significantly increase the fracture resistance of endodontically treated teeth.
Resumo:
This in vitro study evaluated the cytotoxicity of an experimental restorative composite resin subjected to different light-curing regimens. METHODS: Forty round-shaped specimens were prepared and randomly assigned to four experimental groups (n=10), as follows: in Group 1, no light-curing; in Groups 2, 3 and 4, the composite resin specimens were light-cured for 20, 40 or 60 s, respectively. In Group 5, filter paper discs soaked in 5 µL PBS were used as negative controls. The resin specimens and paper discs were placed in wells of 24-well plates in which the odontoblast-like cells MDPC-23 (30,000 cells/cm²) were plated and incubated in a humidified incubator with 5% CO2 and 95% air at 37ºC for 72 h. The cytotoxicity was evaluated by the cell metabolism (MTT assay) and cell morphology (SEM). The data were analyzed statistically by Kruskal-Wallis and Mann-Whitney tests (p<0.05). RESULTS: In G1, cell metabolism decreased by 86.2%, indicating a severe cytotoxicity of the non-light-cured composite resin. On the other hand, cell metabolism decreased by only 13.3% and 13.5% in G2 and G3, respectively. No cytotoxic effects were observed in G4 and G5. In G1, only a few round-shaped cells with short processes on their cytoplasmic membrane were observed. In the other experimental groups as well as in control group, a number of spindle-shaped cells with long cytoplasmic processes were found. CONCLUSION: Regardless of the photoactivation time used in the present investigation, the experimental composite resin presented mild to no toxic effects to the odontoblast-like MDPC-23 cells. However, intense cytotoxic effects occurred when no light-curing was performed.
Resumo:
Dentin adhesion procedure presents limitations, especially regarding to lifetime stability of formed hybrid layer. Alternative procedures have been studied in order to improve adhesion to dentin. OBJECTIVE: The aim of this study was to evaluate in vitro the influence of deproteinization or dentin tubular occlusion, as well as the combination of both techniques, on microtensile bond strength (µTBS) and marginal microleakage of composite resin restorations. MATERIAL AND METHODS: Extracted erupted human third molars were randomly divided into 4 groups. Dentin surfaces were treated with one of the following procedures: (A) 35% phosphoric acid gel (PA) + adhesive system (AS); (B) PA + 10% NaOCl + AS; (C) PA + oxalate + AS and (D) PA + oxalate + 10% NaOCl + AS. Bond strength data were analyzed statistically by two-way ANOVA and Tukey's test. The microleakage scores were analyzed using Kruskal-Wallis and Mann-Whitney non-parametric tests. Significance level was set at 0.05 for all analyses. RESULTS: µTBS data presented statistically lower values for groups D and B, ranking data as A>C>B>D. The use of oxalic acid resulted in microleakage reduction along the tooth/restoration interface, being significant when used alone. On the other hand, the use of 10% NaOCl alone or in combination with oxalic acid, resulted in increased microleakage. CONCLUSIONS: Dentin deproteinization with 10% NaOCl or in combination with oxalate significantly compromised both the adhesive bond strength and the microleakage at interface. Tubular occlusion prior to adhesive system application seems to be a useful technique to reduce marginal microleakage.
Resumo:
Fluorinated denture base acrylic resins can present more stable physical properties when compared with conventional polymers. This study evaluated the incorporation of a fluoroalkyl methacrylate (FMA) mixture in a denture base material and its effect on roughness and flexural strength. A swelling behavior assessment of acrylic resin specimens (n=3, per substance) after 12 h of FMA or methyl methacrylate (MMA) immersion was conducted to determine the solvent properties. Rectangular specimens (n=30) were allocated to three groups, according to the concentration of FMA substituted into the monomer component of a heat-polymerized acrylic resin (Lucitone 550), as follows: 0% (control), 10% and 20% (v/v). Acrylic resin mixed with concentrations of 25% or more did not reach the dough stage and was not viable. The surface roughness and flexural strength of the specimens were tested. Variables were analyzed by ANOVA and Tukey's test (a=0.05). Immersion in FMA produced negligible swelling, and MMA produced obvious swelling and dissolution of the specimens. Surface roughness at concentrations of 0%, 10% and 20% were: 0.25 ± 0.04, 0.24 ± 0.04, 0.22 ± 0.03 mm (F=1.78; p=0.189, not significant). Significant differences were found for flexural strength (F=15.92; p<0.001) and modulus of elasticity (F=7.67; p=0.002), with the following results: 96 ± 6, 82 ± 5, 84 ± 6 MPa, and 2,717 ± 79, 2,558 ± 128, 2574 ± 87 MPa, respectively. The solvent properties of FMA against acrylic resin are weak, which would explain why concentrations over 20% were not viable. Surface changes were not detected after the incorporation of FMA in the denture base acrylic resin tested. The addition of FMA into denture base resin may lower the flexural strength and modulus of elasticity, regardless of the tested concentration.
Resumo:
This study evaluated the color stability, surface roughness and flexural strength of a microwave-polymerized acrylic resin after immersion in sodium hypochlorite (NaOCl), simulating 20 min of disinfection daily during 180 days. Forty disk-shaped (15 x 4 mm) and 40 rectangular (65 x 10 x 3 mm) specimens were prepared with a microwave-polymerized acrylic resin (Onda-Cryl). Specimens were immersed in either 0.5% NaOCl, 1% NaOCl, Clorox/Calgon and distilled water (control). Color measurements were determined by a portable colorimeter. Three parallel lines, separated by 1.0 mm, were registered on each specimen before and after immersion procedures to analyze the surface roughness. The flexural strength was measured using a 3-point bending test in a universal testing machine with a 50 kgf load cell and a crosshead speed of 1 mm/min. Data were analyzed statistically by ANOVA and Tukey's test (?=0.05). There was no statistically significant differences (p>0.05) among the solutions for color, surface roughness and flexural strength. It may be concluded that immersion in NaOCl solutions simulating short-term daily use during 180 days did not influence the color stability, surface roughness and flexural strength of a microwave-polymerized acrylic resin.
Resumo:
This study evaluated the effect of chemical and mechanical surface treatments for cast metal alloys on the bond strength of an indirect composite resin (Artglass) to commercially pure titanium (cpTi). Thirty cylindrical metal rods (3 mm diameter x 60 mm long) were cast in grade-1 cpTi and randomly assigned to 6 groups (n=5) according to the received surface treatment: sandblasting; chemical treatment; mechanical treatment - 0.4 mm beads; mechanical treatment - 0.6 mm beads; chemical/mechanical treatment - 0.4 mm; and chemical/mechanical treatment - 0.6 mm beads. Artglass rings (6.0 mm diameter x 2.0 mm thick) were light cured around the cpTi rods, according manufacturer's specifications. The specimens were invested in hard gypsum and their bond strength (in MPa) to the rods was measured at fracture with a universal testing machine at a crosshead speed of 2.0 mm/min and 500 kgf load cell. Data were analyzed statistically by one-way ANOVA and Tukey test (a=5%). The surface treatments differed significantly from each other (p<0.05) regarding the recorded bond strengths. Chemical retention and sandblasting showed statistically similar results to each other (p=0.139) and both had significantly lower bond strengths (p<0.05) than the other treatments. In conclusion, mechanical retention, either associated or not to chemical treatment, provided higher bond strength of the indirect composite resin to cpTi.