927 resultados para REPLACEMENT REACTION
Resumo:
This Letter reports on the synthesis of Ag-Au nanoparticles (NPs) with controlled structures and compositions via a galvanic replacement reaction between Ag NPs and AuCl4(aq)- followed by the investigation of their optical and catalytic properties. Our results showed the formation of porous walls, hollow interiors and increased Au content in the Ag-Au NPs as the volume of AuCl4(aq)- employed in the reaction was increased. These variations led to a red shift and broadening of the SPR peaks and an increase of up to 10.9-folds in the catalytic activity towards the reduction of 4-nitrophenol relative to Ag NPs. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We report the synthesis of silver-gold nanotubes containing hot spots along their surface. The Ag-Au nanotubes exhibited exceptional SERS properties compared to silver nanowires, enabling the detection of crystal violet in the 10(-10) M regime, as well as 9-nitroanthracene and benzo[a] pyrene at 3.3 x 10(-7) M.
Resumo:
The performance of La(2-x)M(x)CuO(4) perovskites (where M = Ce, Ca or Sr) as catalysts for the water-gas shift reaction was investigated at 290 degrees C and 360 degrees C. The catalysts were characterized by EDS, XRD, N(2) adsorption-desorption, XPS and XANES. The XRD results showed that all the perovskites exhibited a single phase (the presence of perovskite structure), suggesting the incorporation of metals in the perovskite structure. The XPS and XANES results showed the presence of Cu(2+) on the surface. The perovskites that exhibited the best catalytic performance were La(2-x)Ce(x)CuO(4) perovslcites, with CO conversions of 85%-90%. Moreover, these perovskites have higher surface areas and larger amounts of Cu on the surface. And Ce has a higher filled energy level than the other metals, increasing the energy of the valence band of Ce and providing more electrons for the reaction. Besides, the La(1.80)Ca(0.20)CuO(4) perovskite showed a good catalytic performance.
Resumo:
The procedure for formaldehyde analysis recommended by the National Institute for Occupational Safety and Health (NIOSH) is the Chromotropic acid spectrophotometric method, which is the one that uses concentrated sulphuric acid. In the present study the oxidation step associated with the aforementioned method for formaldehyde determination was investigated. Experimental evidence has been obtained indicating that when concentrated H2SO4 (18 mol l(-1)) is used (as in the NIOSH procedure) that acid is the oxidizing agent. on the other hand, oxidation through dissolved oxygen takes place when concentrated H2SO4 is replaced by concentrated hydrochloric (12 mol l(-1)) and phosphoric (14.7 mol l(-1)) acids as well as by diluted H2SO4 (9.4 mol l(-1)). Based on investigations concerning the oxidation step, a modified procedure was devised, in which the use of the potentially hazardous and corrosive concentrated H2SO4 was eliminated and advantageously replaced by a less harmful mixture of HCl and H2O2. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
The reaction center (RC) from Rhodobacter sphaeroides converts light into chemical energy through the reduction and protonation of a bound quinone molecule QB (the secondary quinone electron acceptor). We investigated the proton transfer pathway by measuring the proton-coupled electron transfer, kAB(2) [QA⨪QB⨪ + H+ → QA(QBH)−] in native and mutant RCs in the absence and presence of Cd2+. Previous work has shown that the binding of Cd2+ decreases kAB(2) in native RCs ≈100-fold. The preceding paper shows that bound Cd2+ binds to Asp-H124, His-H126, and His-H128. This region represents the entry point for protons. In this work we investigated the proton transfer pathway connecting the entry point with QB⨪ by searching for mutations that greatly affect kAB(2) (≳10-fold) in the presence of Cd2+, where kAB(2) is limited by the proton transfer rate (kH). Upon mutation of Asp-L210 or Asp-M17 to Asn, kH decreased from ≈60 s−1 to ≈7 s−1, which shows the important role that Asp-L210 and Asp-M17 play in the proton transfer chain. By comparing the rate of proton transfer in the mutants (kH ≈ 7 s−1) with that in native RCs in the absence of Cd2+ (kH ≥ 104 s−1), we conclude that alternate proton transfer pathways, which have been postulated, are at least 103-fold less effective.
Resumo:
The 101 residue protein early pregnancy factor (EPF), also known as human chaperonin 10, was synthesized from four functionalized, but unprotected, peptide segments by a sequential thioether ligation strategy. The approach exploits the differential reactivity of a peptide-NHCH2CH2SH thiolate with XCH2CO-peptides, where X = Cl or I/Br. Initial model studies with short functionalized (but unprotected) peptides showed a significantly faster reaction of a peptide-NHCH2CH2SH thiolate with a BrCH2CO-peptide than with a CICH2CO-peptide, where thiolate displacement of the halide leads to chemoselective formation of a thioether surrogate for the Gly-Gly peptide bond. This rate difference was used as the basis of a novel sequential ligation approach to the synthesis of large polypeptide chains. Thus, ligation of a model bifunctional N-alpha-chloroacetyl, C-terminal thiolated peptide with a second N-alpha-bromoacetyl peptide demonstrated chemoselective bromide displacement by the thiol group. Further investigations showed that the relatively unreactive N-alpha-chloroacetyl peptides could be activated by halide exchange using saturated KI solutions to yield the highly reactive No-iodoacetyl peptides. These findings were used to formulate a sequential thioether ligation strategy for the synthesis of EPF, a 101 amino acid protein containing three Gly-Gly sites approximately equidistantly spaced within the peptide chain. Four peptide segments or cassettes comprising the EPF protein sequence (BrAc-[EPF 78-101] 12, ClAc-[EPF 58-75]-[NHCH2CH2SH] 13, ClAc-[EPF 30-55]-[NHCH2CH2SH] 14, and Ac-[EPF 1-27]-[NHCH2CH2SH] 15) of EPF were synthesized in high yield and purity using Boc SPPS chemistry. In the stepwise sequential ligation strategy, reaction of peptides 12 and 13 was followed by conversion of the N-terminal chloroacetyl functional group to an iodoacetyl, thus activating the product peptide for further ligation with peptide 14. The process of ligation followed by iodoacetyl activation was repeated to yield an analogue of EPF (EPF psi(CH2S)(28-29,56-57,76-77)) 19 in 19% overall yield.
Resumo:
The Ni-II and Zn-II complexes [MCl(Tpms(Ph))] (Tpms(Ph) = SO3C(pz(Ph))(3), pz = pyrazolyl; M = Ni 2 or Zn 3) and the Cu-II complex [CuCl(Tpms(Ph))(H2O)] (4) have been prepared by treatment of the lithium salt of the sterically demanding and coordination flexible tris(3-phenyl-1-pyrazolyl)methanesulfonate (Tpms(Ph))(-) (1) with the respective metal chlorides. The (Tpms(Ph))(-) ligand shows the N-3 or N2O coordination modes in 2 and 3 or in 4, respectively. Upon reaction of 2 and 3 with Ag(CF3SO3) in acetonitrile the complexes [M(Tpms(Ph))-(MeCN)](CF3SO3) (M = Ni 5 or Zn 6, respectively) were formed. The compounds were obtained in good yields and characterized by analytic and spectral (IR, H-1 and C-13{H-1} NMR, ESI-MS) data, density functional theory (DFT) methods and {for 4 and [(Bu4N)-Bu-n](Tpms(Ph)) (7), the tatter obtained upon Li+ replacement by [(Bu4N)-Bu-n](+) in Li(Tpms(Ph))} by single crystal X-ray diffraction analysis. The Zn-II and Cu-II complexes (3 and 4, respectively) act as efficient catalyst precursors for the diastereoselective nitroaldol reaction of benzaldehydes and nitroethane to the corresponding beta-nitroalkanols (up to 99% yield, at room temperature) with diastereoselectivity towards the formation of the anti isomer, whereas the Ni-II complex 2 only shows a modest catalytic activity.
Resumo:
Sequentially along B cell differentiation, the different classes of membrane Ig heavy chains associate with the Ig alpha/Ig beta heterodimer within the B cell receptor (BCR). Whether each Ig class conveys specific signals adapted to the corresponding differentiation stage remains debated. We investigated the impact of the forced expression of an IgA-class receptor throughout murine B cell differentiation by knocking in the human C alpha Ig gene in place of the S mu region. Despite expression of a functional BCR, homozygous mutant mice showed a partial developmental blockade at the pro-B/pre-BI and large pre-BII cell stages, with decreased numbers of small pre-BII cells. Beyond this stage, peripheral B cell compartments of reduced size developed and allowed specific antibody responses, whereas mature cells showed constitutive activation and a strong commitment to plasma cell differentiation. Secreted IgA correctly assembled into polymers, associated with the murine J chain, and was transported into secretions. In heterozygous mutants, cells expressing the IgA allele competed poorly with those expressing IgM from the wild-type allele and were almost undetectable among peripheral B lymphocytes, notably in gut-associated lymphoid tissues. Our data indicate that the IgM BCR is more efficient in driving early B cell education and in mucosal site targeting, whereas the IgA BCR appears particularly suited to promoting activation and differentiation of effector plasma cells.
Resumo:
We use two coupled equations to analyze the space-time dynamics of two interacting languages. Firstly, we introduce a cohabitation model, which is more appropriate for human populations than classical (non-cohabitation) models. Secondly, using numerical simulations we nd the front speed of a new language spreading into a region where another language was previously used. Thirdly, for a special case we derive an analytical formula that makes it possible to check the validity of our numerical simulations. Finally, as an example, we nd that the observed front speed for the spread of the English language into Wales in the period 1961-1981 is consistent with the model predictions. We also nd that the e¤ects of linguistic parameters are much more important than those of parameters related to population dispersal and reproduction. If the initial population densities of both languages are similar, they have no e¤ect on the front speed. We outline the potential of the new model to analyze relationships between language replacement and genetic replacement
Resumo:
Decomposition and side reactions of, and the synthetic use of, pentafluorophenylmagnesium bromide and pentafluorophenyllithium have been investigated using G,C9/M.S, techniques• Their reactions with reagents such as CgF^X (X - H, F, CI, Br, 1), C6F4X2 (X - H, CI)f C6F3C13, C6H6. (CgX5)3P (X = H, F), (C6X5)3P=0 (X = H, F), (CgX5)Si (CH3)3 (X = H, F) and (CH0K SiCl , n = 1,2, in ether or ether/n-hexane were studied• In addition to the principal reaction of synthetic use, namely the replacement of a halogen by a pentafluorophenyl group, two types of side reactions were observed* These were (i) intermolecular loss of LiF via a nucleophilic substitution, and (ii) intramolecular loss of LiF, followed by the addition of either inorganic salts such as lithium or magnesium halides, or organometal compounds such as organolithium or organo-Grigaard* G.C«/M.S. techniques were routinely employed to study complicated reaction mixtures. Although mass spectrometry alone has disadvantages for the identification of isomers, deduction of the most probable pathway often helps overcome this problem.
Resumo:
The performance of La((1-y))Sr(y)Ni(x)Co((1-x))O(3) perovskites for the water gas shift reaction (WGSR) was investigated. The samples were prepared by the co- precipitation method and were performed by the BET method, XRD, TPR, and XPS. The catalytic tests were performed at 300 and 400 A degrees C and H(2)O(v)/CO = 2.3/1 (molar ratio). The sample with the highest surface area is La(0.70)Sr(0.30)NiO(3). The XRD results showed the formation of perovskite structure for all samples, and the La(0.70)Sr(0.30)NiO(3) sample also presented peaks corresponding to La(2)NiO(4) and NiO, indicating that the solubility limit of Sr in the perovskite lattice was surpassed. The replacement of Co by Ni favored the reduction of the species at lower temperatures, and the sample containing Sr presented the highest amount of reducible species, as identified by TPR results. All samples were active, the Sr containing perovskite appearing the most active due to the highest surface area, presence of the La(2)NiO(4) phase, and higher content of Cu in the surface, as detected by XPS. Among the samples containing Co, the most active one was that with x = 0.70 (60% of CO conversion).
Resumo:
The purpose of this study was to determine whether changes in glenoid version are associated with humeral head displacement and changes in the joint reaction forces, as these might contribute to instability or loosening in total shoulder replacement. A total shoulder prosthesis was implanted in neutral version in 6 cadaveric shoulders. Glenoid version was then changed in steps of 4 degrees toward more anteversion and retroversion. An increase in anteversion resulted in anterior translation of the humeral head and in eccentric loading of the anterior part of the glenoid. Retroversion was associated with posterior displacement and posterior loading of the glenoid. A change in rotation of the humeral component did not compensate for altered version of the glenoid component. These results suggest that both instability and glenoid component loosening may be related to the version of the glenoid component. Therefore, assessment of loosening and instability justifies precise assessment of glenoid component version.
Resumo:
The integrase protein of human immunodeficiency virus type 1 is necessary for the stable integration of the viral genome into host DNA. Integrase catalyzes the 3' processing of the linear viral DNA and the subsequent DNA strand transfer reaction that inserts the viral DNA ends into host DNA. Although full-length integrase is required for 3' processing and DNA strand transfer activities in vitro, the central core domain of integrase is sufficient to catalyze an apparent reversal of the DNA strand transfer reaction, termed disintegration. This catalytic core domain, as well as the full-length integrase, has been refractory to structural studies by x-ray crystallography or NMR because of its low solubility and propensity to aggregate. In an attempt to improve protein solubility, we used site-directed mutagenesis to replace hydrophobic residues within the core domain with either alanine or lysine. The single substitution of lysine for phenylalanine at position 185 resulted in a core domain that was highly soluble, monodisperse in solution, and retained catalytic activity. This amino acid change has enabled the catalytic domain of integrase to be crystallized and the structure has been solved to 2.5-A resolution [Dyda, F., Hickman, A. B., Jenkins, T. M., Engelman, A., Craigie, R. & Davies, D. R. (1994) Science 266, 1981-1986]. Systematic replacement of hydrophobic residues may be a useful strategy to improve the solubility of other proteins to facilitate structural and biochemical studies.
Resumo:
It has been previously established that alkali silica reaction (ASR) in concrete may be controlled by blending Portland cement with suitable hydraulic or pozzolanic materials. The controlling mechanism has been attributed to the dilution of the cement's alkali content and reduced mobility of ions in concrete's pore solution. In this project an attempt has been made to identify the factors which influence the relative importance of each mechanism in the overall suppression of the reaction by the use of blended cements. The relationship between the pore solution alkalinity and ASR was explored by the use of expansive mortar bars submerged in alkaline solutions of varying concentration. This technique enabled the blended cement's control over expansion to be assessed at given `pore solution' alkali concentrations. It was established that the cement blend, the concentration and quantity of alkali present in the pore solution were the factors which determined the rate and extent of ASR. The release of alkalis into solution by Portland cements of various alkali content was studied by analysis of pore solution samples expressed from mature specimens. The specification for avoiding ASR by alkali limitation, both by alkali content of cement and the total quantity of alkali were considered. The effect on the pore solution alkalinity when a range of Portland cements were blended with various replacement materials was measured. It was found that the relationship between the type of replacement material, its alkali content and that of the cement were the factors which primarily determined the extent of the pore solution alkali dilution effect. It was confirmed that salts of alkali metals of the kinds found as common concrete contaminants were able to increase the pore solution hydroxyl ion concentration significantly. The increase was limited by the finite anion complexing ability of the cement.