992 resultados para RENOVASCULAR HYPERTENSIVE-RATS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Association between hypertension and bladder symptoms has been described. We hypothesized that micturition dysfunction may be associated with renin-angiotensin system (RAS) acting in urethra. The effects of the anti-hypertensive drugs losartan (AT1 antagonist) and captopril (angiotensin-converting enzyme inhibitor) in comparison with atenolol (β1-adrenoceptor antagonist independently of RAS blockade) have been investigated in bladder and urethral dysfunctions during renovascular hypertension in rats. Two kidney-1 clip (2K-1C) rats were treated with losartan (30 mg/kg/day), captopril (50mg/kg/day) or atenolol (90 mg/kg/day) for eight weeks. Cystometric study, bladder and urethra smooth muscle reactivities, measurement of cAMP levels and p38 MAPK phosphorylation in urinary tract were determined. Losartan and captopril markedly reduced blood pressure in 2K-1C rats. The increases in non-voiding contractions, voiding frequency and bladder capacity in 2K-1C rats were prevented by treatments with both drugs. Likewise, losartan and captopril prevented the enhanced bladder contractions to electrical-field stimulation (EFS) and carbachol, along with the impaired relaxations to β-adrenergic-cAMP stimulation. Enhanced neurogenic contractions and impaired nitrergic relaxations were observed in urethra from 2K-1C rats. Angiotensin II also produced greater urethral contractions that were accompanied by higher phosphorylation of p38 MAPK in urethral tissues of 2K-1C rats. Losartan and captopril normalized the urethral dysfunctions in 2K-1C rats. In contrast, atenolol treatment largely reduced the blood pressure in 2K-1C rats but failed to affect the urinary tract smooth muscle dysfunction. The urinary tract smooth muscle dysfunction in 2K-1C rats takes place by local RAS activation irrespective of levels of arterial blood pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased expression/activity of matrix metalloproteinases (MMPs), especially MMP-2, plays a role in the vascular alterations induced by hypertension, and increased oxidative stress is a major factor activating MMPs. Here, we hypothesized that lercanidipine, a calcium channel blocker, could attenuate the increases in oxidative stress and MMP-2 expression/activity in the two-kidney, one-clip (2K-1C) hypertensive rats. Sham-operated or 2K-1C hypertension rats were treated with lercanidipine 2.5 mg/kg/day (or vehicle) starting three weeks after hypertension was induced. Systolic blood pressure was monitored weekly. After five weeks of treatment, aortic rings were isolated to assess endothelium-dependent and independent relaxations. Quantitative morphometry of structural changes in the aortic wall were studied in hematoxylin/eosin sections. Aortic MMP-2 levels were determined by gelatin zymography. Aortic MMP-2/tissue inhibitor of metalloproteinases (TIMP)-2 mRNA levels were determined by quantitative real-time RT-PCR. Plasma thiobarbituric acid reactive substances concentrations were determined using a fluorometric method. Lercanidipine attenuated 2K-1C hypertension (224 12 versus 183 11 mm Hg in 2K-1C rats and 2K-1C + Lercandipine rats, respectively; P < 0.01) and prevented the reduction in endothelium-dependent vasorelaxation found in 2K-1C rats. Increased MMP-2 and Pro-MMP-2 levels were found in the aortas of 2K-1C rats (all P < 0.05). Lercandipine attenuated 2K-1C-induced increases in MMP-2 by more than 60% and blunted 2K-1C-induced increases in oxidative stress (both P < 0.001). While hypertension-induced significant aortic wall hypertrophy and approximately 9-fold increases in the ratio of MMP-2MMP-2 mRNA expression (both P < 0.05), lercandipine did not affect these changes. These results suggest that lercanidipine produces antihypertensive effects and reverses the endothelial dysfunction associated with 2K-1C hypertension, probably through mechanisms involving antioxidant effects leading to lower MMP-2 activation. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Altered activity of matrix metalloproteinases (MMPs) is implicated in the vascular remodeling of hypertension. We examined whether increased MMP-2 expression/activity plays a role in the vascular remodeling and dysfunction found in the two-kidney, one-clip (2K-1C) hypertension. Sham operated or 2K-1C hypertension rats were treated with doxycycline 30 mg/(kg day) (or vehicle). Systolic blood pressure was monitored weekly. After 8 weeks of treatment, aortic rings were isolated to assess endothelium-dependent and independent relaxations. Quantitative morphometry of structural changes, collagen, and elastin contents in the aortic wall were studied in hematoxylin/eosin, Sirius Red, and Orceine stained aortic sections, respectively. Aortic MMP-2 levels were determined by gelatin zymography and aortic MMP-2 proteolytic activity was measured using DQ gelatin as the substrate after MMP-2 was captured by a specific antibody and immobilized on a microplate. Aortic MMP-2/tissue inhibitor of metalloprotemases (TIMP)-2 mRNA levels were determined by real time RT-PCR. Doxycycline attenuated 2K-1C hypertension (215 +/- 8 mmHg versus 167 +/- 13 mmHg in 2K-1C rats and 2K-1C + doxy rats, respectively; P < 0.01) and prevented the 35% reduction in endothelium-dependent vasorelaxation found in 2K-1C rats. Doxycycline prevented the increases in media thickness, and was associated with lower media/lumen and cross-sectional areas (all P<0.01). Doxycycline also prevented excessive collagen and elastin deposition in the vascular wall. Increased MMP-2 and Pro-MMP-2 levels and MMP-2 activity were found in the aortas of 2K-1C rats (all P<0.05). A 21-fold increase (P<0.001) in the ratio of MMP-2/TIMP-2 mRNA expression was found in the 2K-1C group, whereas this ratio remained unaltered in 2K-1C+doxy rats. Our results suggest that MMP-2 plays a role in 2K-1C hypertension and its structural and functional vascular changes, which were attenuated by doxycycline. (C) 2007 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the changes in the responses to noradrenaline of isolated tail arteries of spontaneously hypertensive (SHR) and renovascular hypertensive rats (Wistar-Kyoto: two-kidney, one-clip model, WKY:2K1C) compared with normotensive (Wistar-Kyoto, WKY) rats. Renovascular hypertension was induced by 4 weeks' unilateral renal artery clipping. Arteries were vasoconstricted with exogenous noradrenaline, electrical field stimulation or high potassium. The effects of the latter two stimuli were abolished by reserpine and so were presumably dependent on the presence of endogenous noradrenaline. In the SHR the maximal vasoconstriction produced by all three stimuli was greater than in WKY. Dose-response curves were steeper and there was no change in threshold. Vascular mass was greater. We interpret these results as showing an increase in vascular reactivity in the SHR caused by structural adaptation. The WKY:2K1C responses to noradrenaline could also be explained in terms of structural adaptation but there was no increase in vascular mass. Sensitivity to potassium and electrical stimulation was decreased, suggesting a defect in vascular neurotransmission. This was supported by the observations of a decreased arterial noradrenaline content and of decreased sensitivity to cocaine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pathogenesis of fibrosis and the functional features of pressure overload myocardial hypertrophy are still controversial. The objectives of the present study were to evaluate the function and morphology of the hypertrophied myocardium in renovascular hypertensive (RHT) rats. Male Wistar rats were sacrificed at week 4 (RHT4) and 8 (RHT8) after unilateral renal ischemia (Goldblatt II hypertension model). Normotensive rats were used as controls. Myocardial function was analyzed in isolated papillary muscle preparations, morphological features were defined by light microscopy, and myocardial hydroxyproline concentration (HOP) was determined by spectrophotometry. Renal artery clipping resulted in elevated systolic arterial pressure (RHT4: 178 ± 19 mmHg and RHT8: 194 ± 24 mmHg, P<0.05 vs control: 123 ± 7 mmHg). Myocardial hypertrophy was observed in both renovascular hypertensive groups. The myocardial HOP concentration was increased in the RHT8 group (control: 2.93 ± 0.38 µg/mg; RHT4: 3.02 ± 0.40 µg/mg; RHT8: 3.44 ± 0.45 µg/mg of dry tissue, P<0.05 vs control and RHT4 groups). The morphological study demonstrated myocyte necrosis, vascular damage and cellular inflammatory response throughout the experimental period. The increased cellularity was more intense in the adventitia of the arterioles. As a consequence of myocyte necrosis, there was an early, local, conjunctive stroma collapse with disarray and thickening of the argyrophilic interstitial fibers, followed by scarring. The functional data showed an increased passive myocardial stiffness in the RHT4 group. We conclude that renovascular hypertension induces myocyte and arteriole necrosis. Reparative fibrosis occurred as a consequence of the inflammatory response to necrosis. The mechanical behavior of the isolated papillary muscle was normal, except for an early increased myocardial passive stiffness

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The two-kidney, one-clip renovascular (2K1C) hypertension model is characterized by a reduction in renal flow on the clipped artery that activates the renin-angiotensin system. Endothelium dysfunction, including diminished nitric oxide production, is also believed to play a role in the pathophysiology of this model. Some studies have shown an effect of L-arginine (L-Arg, a nitric oxide precursor) on hypertension. In the present study we determined the ability of L-Arg (7 days of treatment) to reduce blood pressure and alter renal excretions of water, Na+ and K+ in a model of 2K1C-induced hypertension. Under ether anesthesia, male Wistar rats (150-170 g) had a silver clip (0.20 mm) placed around the left renal artery to produce the 2K1C renovascular hypertension model. In the experimental group, the drinking water was replaced with an L-Arg solution (10 mg/ml; average intake of 300 mg/day) from the 7th to the 14th day after surgery. Sham-operated rats were used as controls. At the end of the treatment period, mean blood pressure was measured in conscious animals. The animals were then killed and the kidneys were removed and weighed. There was a significant reduction of mean blood pressure in the L-Arg-treated group when compared to control (129 ± 7 vs 168 ± 6 mmHg, N = 8-10 per group; P<0.05). Concomitantly, a significant enhancement of water and Na+ excretion was observed in the 2K1C L-Arg-treated group when compared to control (water: 13.0 ± 0.7 vs 9.2 ± 0.5 ml/day, P<0.01; Na+: 1.1 ± 0.05 vs 0.8 ± 0.05 mEq/day, respectively, P<0.01). These results show that orally administered L-Arg acts on the kidney, possibly inducing changes in renal hemodynamics or tubular transport due to an increase in nitric oxide formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the effect of exercise training (Ex) without (Ex 0%) or with a 3% workload (Ex 3%) on different cardiac and renal parameters in renovascular hypertensive (2K1C) male Fisher rats weighing 150-200 g. Ex was performed for 5 weeks, 1 h/day, 5 days/week. Ex 0% or Ex 3% induced similar attenuation of baseline mean arterial pressure (MAP, 119 ± 5 mmHg in 2K1C Ex 0%, N = 6, and 118 ± 5 mmHg in 2K1C Ex 3%, N = 11, vs 99 ± 4 mmHg in sham sedentary (Sham Sed) controls, N = 10) and heart rate (HR, bpm) (383 ± 13 in 2K1C Ex 0%, N = 6, and 390 ± 14 in 2K1C Ex 3%, N = 11 vs 371 ± 11 in Sham Sed, N = 10,). Ex 0%, but not Ex 3%, improved baroreflex bradycardia (0.26 ± 0.06 ms/mmHg, N = 6, vs 0.09 ± 0.03 ms/mmHg in 2K1C Sed, N = 11). Morphometric evaluation suggested concentric left ventricle hypertrophy in sedentary 2K1C rats. Ex 0% prevented concentric cardiac hypertrophy, increased cardiomyocyte diameter and decreased cardiac vasculature thickness in 2K1C rats. In contrast, in 2K1C, Ex 3% reduced the concentric remodeling and prevented the increase in cardiac vasculature wall thickness, decreased the cardiomyocyte diameter and increased collagen deposition. Renal morphometric analysis showed that Ex 3% induced an increase in vasculature wall thickness and collagen deposition in the left kidney of 2K1C rats. These data suggest that Ex 0% has more beneficial effects than Ex 3% in renovascular hypertensive rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exercise training (Ex) has been recommended for its beneficial effects in hypertensive states. The present study evaluated the time-course effects of Ex without workload on mean arterial pressure (MAP), reflex bradycardia, cardiac and renal histology, and oxidative stress in two-kidney, one-clip (2K1C) hypertensive rats. Male Fischer rats (10 weeks old; 150–180 g) underwent surgery (2K1C or SHAM) and were subsequently divided into a sedentary (SED) group and Ex group (swimming 1 h/day, 5 days/week for 2, 4, 6, 8, or 10 weeks). Until week 4, Ex decreased MAP, increased reflex bradycardia, prevented concentric hypertrophy, reduced collagen deposition in the myocardium and kidneys, decreased the level of thiobarbituric acid-reactive substances (TBARS) in the left ventricle, and increased the catalase (CAT) activity in the left ventricle and both kidneys. From week 6 to week 10, however, MAP and reflex bradycardia in 2K1C Ex rats became similar to those in 2K1C SED rats. Ex effectively reduced heart rate and prevented collagen deposition in the heart and both kidneys up to week 10, and restored the level of TBARS in the left ventricle and clipped kidney and the CAT activity in both kidneys until week 8. Ex without workload for 10 weeks in 2K1C rats provided distinct beneficial effects. The early effects of Ex on cardiovascular function included reversing MAP and reflex bradycardia. The later effects of Ex included preventing structural alterations in the heart and kidney by decreasing oxidative stress and reducing injuries in these organs during hypertension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the-effect of interstitial fibrosis alone or associated with hypertrophy. on diastolic myocardial function in renovascular hypertensive rats. Myocardial function was evaluated in isolated papillary muscle from renovascular hypertensive Wistar rats (RHT, n = 14), renovascular hypertensive rats treated with the angiotensin converting enzyme inhibitor (ACEI) ramipril, 20 mg.kg(-1).day(-1) (RHT RAM, n = 14), and age-matched unoperated and untreated Wistar rats (CONT, n = 12). The ACEI treatment for 3 weeks allowed the regression of myocyte mass and the maintenance of interstitial fibrosis. Myocardial passive stiffness was analyzed by the resting tension - length relationship. The myocardial fibrosis was evaluated by measuring myocardial hydroxyproline (Hyp) concentration and by histological studies of the myocardium stained with hematoxylin and eosin or picrosirius red. Left ventricular weight was significantly higher in RHT (0.97 +/- 0.12 g) compared with CONT (0.66 +/- 0.06 g) and RHT RAM (0.69 +/- 0.14 g). The Hyp levels were 2.9 +/- 0.4, 3.4 +/- 0.3, and 3.8 +/- 0.4 mu g/mg of dry tissue for the CONT, RHT, and RHT RAM, respectively. Perivascular and interstitial fibrosis were observed in RHT and RHT RAM groups. There were lymphomononuclear inflammatory exudate and edema around arteries, involving adjacent myocytes in the RHT group. There was an increased passive stiffness in RHT and RHT RAM groups compared with the CONT group. In conclusion, our results indicate that the Impaired diastolic function in the renovascular hypertensive rats is related to interstitial fibrosis rather than to myocardial hypertrophy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypertension is one of the major precursors of atherosclerotic vascular disease, and vascular smooth muscle abnormal cell replication is a key feature of plaque formation. The present study was conducted to examine the relationship between hypertension and smooth muscle cell proliferation after balloon injury and to correlate neointima formation with resting membrane potential of uninjured smooth muscle cells, since it has been suggested that altered vascular function in hypertension may be related to the resetting of the resting membrane potential in spontaneously hypertensive rats (SHR). Neointima formation was induced by balloon injury to the carotid arteries of SHR and renovascular hypertensive rats (1K-1C), as well as in their normotensive controls, i.e., Wistar Kyoto (WKY) and normal Wistar (NWR) rats. After 14 days the animals were killed and the carotid arteries were submitted to histomorphometric and immunohistochemical analyses. Resting membrane potential measurements showed that uninjured carotid arteries from SHR smooth muscle cells were significantly depolarized (-46.5 ± 1.9 mV) compared to NWR (-69 ± 1.4 mV), NWR 1K-1C (-60.8 ± 1.6 mV), WKY (-67.1 ± 3.2 mV) and WKY 1K-1C (-56.9 ± 1.2 mV). The SHR arteries responded to balloon injury with an enhanced neointima formation (neo/media = 3.97 ± 0.86) when compared to arteries of all the other groups (NWR 0.93 ± 0.65, NWR 1K-1C 1.24 ± 0.45, WKY 1.22 ± 0.32, WKY 1K-1C 1.15 ± 0.74). Our results indicate that the increased fibroproliferative response observed in SHR is not related to the hypertensive state but could be associated with the resetting of the carotid smooth muscle cell resting membrane potential to a more depolarized state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In endothelial cells, stretch-activated cation channels have been proposed to act as mechanosensors for changes in hemodynamic forces. We have identified a novel mechanosensitive pressure-activated channel in intact endothelium from rat aorta and mesenteric artery. The 18-pS cation channel responded with a multifold increase in channel activity when positive pressure was applied to the luminal cell surface with the patch pipette and inactivated at negative pipette pressure. Channel permeability ratio for K+, Na+, and Ca2+ ions was 1:0.98:0.23. Ca2+ influx through the channel was sufficient to activate a neighboring Ca2(+)-dependent K+ channel. Hemodynamic forces are chronically disturbed in arterial hypertension. Endothelial cell dysfunction has been implicated in the pathogenesis of arterial hypertension. In two comparative studies, density of the pressure-activated channel was found to be significantly higher in spontaneously hypertensive rats and renovascular hypertensive rats compared with their respective normotensive controls. Channel activity presumably leads to mechanosensitive Ca2+ influx and induces cell hyperpolarization by K+ channel activity. Both Ca2+ influx and hyperpolarization are known to induce a vasodilatory endothelial response by stimulating endothelial nitric oxide (NO) production. Up-regulation of channel density in hypertension could, therefore, represent a counterregulatory mechanism of vascular endothelium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background: Labdane-type diterpenes induce lower blood pressure via relaxation of vascular smooth muscle; however, there are no studies describing the effects of labdanes in hypertensive rats. Objective: The present study was designed to investigate the cardiovascular actions of the labdane-type diterpene ent-3-acetoxy-labda-8(17), 13-dien-15-oic acid (labda-15-oic acid) in two-kidney 1 clip (2K-1C) renal hypertension. Methods: Vascular reactivity experiments were performed in aortic rings isolated from 2K-1C and normotensive (2K) male Wistar rats. Nitrate/nitrite (NOx) measurement was performed in aortas by colorimetric assay. Blood pressure measurements were performed in conscious rats. Results: Labda-15-oic acid (0.1-300 µmol/l) and forskolin (0.1 nmol/l - 1 µmol/l) relaxed endothelium-intact and endothelium-denuded aortas from both 2K-1C and 2K rats. Labda-15-oic acid was more effective at inducing relaxation in endothelium-intact aortas from 2K pre-contracted with phenylephrine when compared to the endothelium-denuded ones. Forskolin was more potent than labda-15-oic acid at inducing vascular relaxation in arteries from both 2K and 2K-1C rats. Labda-15-oic acid-induced increase in NOx levels was lower in arteries from 2K-1C rats when compared to 2K rats. Intravenous administration of labda-15-oic acid (0.3-3 mg/kg) or forskolin (0.1-1 mg/kg) induced hypotension in conscious 2K-1C and 2K rats. Conclusion: The present findings show that labda-15-oic acid induces vascular relaxation and hypotension in hypertensive rats.