980 resultados para REDOX PROCESSES
Resumo:
Electrochemical processes in mesoporous TiO2-Nafion thin films deposited on indium tin oxide (ITO) electrodes are inherently complex and affected by capacitance, Ohmic iR-drop, RC-time constant phenomena, and by potential and pH-dependent conductivity. In this study, large-amplitude sinusoidally modulated voltammetry (LASMV) is employed to provide access to almost purely Faradaic-based current data from second harmonic components, as well as capacitance and potential domain information from the fundamental harmonic for mesoporous TiO2-Nafion film electrodes. The LASMV response has been investigated with and without an immobilized one-electron redox system, ferrocenylmethyltrimethylammonium+. Results clearly demonstrate that the electron transfer associated with the immobilized ferrocene derivative follows two independent pathways i) electron hopping within the Nafion network and ii) conduction through the TiO2 backbone. The pH effect on the voltammetric response for the TiO2 reduction pathway (ii) can be clearly identified in the 2nd harmonic LASMV response with the diffusion controlled ferrocene response (i) acting as a pH independent reference. Application of second harmonic data derived from LASMV measurement, because of the minimal contribution from capacitance currents, may lead to reference-free pH sensing with systems like that found for ferrocene derivatives.
Resumo:
The interaction between polyaniline (PAn) and 2,5-dimercapto-1,3,4-thiadiazole (DMcT) was investigated by means of cyclic voltammetry and UV-visible spectroscopy. The results show that the polymerization-depolymerization reaction of DMcT or its dilithium salt Li(2)DMcT is a kinetically quasi-reversible process. PAn exhibits very weak electrochemical activity in neutral propylene carbonate. After doping with protonic acid, such as hydrochloric acid or maleic acid etc., however, it shows an extensively enhanced electroactivity. For the complex system, PAn-DMcT or PAn-Li(2)DMcT, polyaniline has no catalytic activity for the electrochemical polymerization-depolymerization reaction of DMcT or DMcT(2-). Instead, the enhancement of the electrochemical redox activity of PAn-DMcT system compared with that of PAn, DMcT, Li(2)DMcT, and PAn-Li(2)DMcT comes from the protonic doping of PAn by DMcT.
Resumo:
Electrochemical quartz crystal microbalance (EQCM) technique was used to measure the ion transfer in redox processes in electroactive organic thin films, such as self-assembled monolayer (SAM) (4-pyridyl hydroquinone, abbr. 4PHQ), multilayer based on SAM and conducting polymer film (here poly-(3,4-ethylenedioxythiophene), abbr. PEDOT). A mechanism of mixed ion transfer is developed and presented. Analysis of mixed ion transfer during redox processes successfully elucidates the deviation of oscillation frequency of the quartz crystal from theoretical expectation.
Resumo:
Partially N-methylated polyaniline (NMPAn) is used instead of polyaniline (PAn) to make a composite with organodisulfides for cathodes of lithium secondary batteries. NMPAn displays a better electrocatalytic effect on the redox processes of organodisulfides than PAn. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
The electrochemical redox processes of two high nuclearity osmium carbonyl clusters [(PhP)N[OsC(CO) ]·PPN (1) and Os(CO) (6) have been studied by electrochemical in situ FTIR. The five oxidation states of 1, i.e., [OsC(CO)], have been characterized. There are no significant structural changes for these species. Hence, the ability of this decanuclear cluster to act as an electron reservoir has been demonstrated. The structural rearrangement associated with the two-electron reduction of bicapped tetrahedral 6 to octahedral dianion [Os(CO)] and [Os(CO)] tetraanion has also been investigated. © 1996 American Chemical Society.
Resumo:
The electrochemical behavior of the electroactive self-assembled monolayers (SAMs) of thiol-functionalized viologen, CH3(CH2)(9)V2+(CH2)(8)SH, where V2+ is a viologen group, on the gold electrodes is examined by cyclic voltammetry and electrochemical a.c. impedance. A monolayer of viologen is immobilized on the gold electrode surface via the Au-S bond and the normal potentials corresponding to the two successive one-electron transfer processes of the viologen active centers are -310 mV and -652 mV (vs. Ag/AgCl) in 0.1 mol l(-1) phosphate buffer solution (pH 6.96) respectively. These results suggest that the viologen SAMs are stable and well-behaved monolayers. The experimental impedance data corresponding to different forms of viologen group have been fitted to equivalent electrical circuits, and the surface capacitances and resistances have been given. The heterogenous electron transfer rates of the first and the second redox processes are 7.57 s(-1) and 1.49 s(-1) respectively through a.c. impedance.
Resumo:
An investigation of electrode oxidation processes of (tetra-phenylporphinato) manganese (III) Perchlorate, (TPS)Mn(III)ClO4, was carried out during the titration of chloride anions by conventional cyclic voltammetry, thin-layer cyclic voltammetry and spectroelectrochemistry. It was demonstrated that in the presence of one equivalent amount of Cl-, the first one electron oxidation reaction corresponds to the Mn(III)I cation radical oxidation, and the second one electron oxidation corresponds to the cation radical/dication generation followed by an iso-porphyrin formation reaction, however in the presence of two equivalent amount of Cl-, the first one electron oxidation of Mn(III) gives Mn(IV) porphyrin and the second one electron oxidation generates cation radicals of Mn(IV) followed by an iso-porphyrin formation reactions. Mechanisms of these redox processes are postulated.
Resumo:
Copper and Zn are essential micronutrients for plants, animals, and humans; however, they may also be pollutants if they occur at high concentrations in soil. Therefore, knowledge of Cu and Zn cycling in soils is required both for guaranteeing proper nutrition and to control possible risks arising from pollution.rnThe overall objective of my study was to test if Cu and Zn stable isotope ratios can be used to investigate into the biogeochemistry, source and transport of these metals in soils. The use of stable isotope ratios might be especially suitable to trace long-term processes occurring during soil genesis and transport of pollutants through the soil. In detail, I aimed to answer the questions, whether (1) Cu stable isotopes are fractionated during complexation with humic acid, (2) 65Cu values can be a tracer for soil genetic processes in redoximorphic soils (3) 65Cu values can help to understand soil genetic processes under oxic weathering conditions, and (4) 65Cu and 66Zn values can act as tracers of sources and transport of Cu and Zn in polluted soils.rnTo answer these questions, I ran adsorption experiments at different pH values in the laboratory and modelled Cu adsorption to humic acid. Furthermore, eight soils were sampled representing different redox and weathering regimes of which two were influenced by stagnic water, two by groundwater, two by oxic weathering (Cambisols), and two by podzolation. In all horizons of these soils, I determined selected basic soil properties, partitioned Cu into seven operationally defined fractions and determined Cu concentrations and Cu isotope ratios (65Cu values). Finally, three additional soils were sampled along a deposition gradient at different distances to a Cu smelter in Slovakia and analyzed together with bedrock and waste material from the smelter for selected basic soil properties, Cu and Zn concentrations and 65Cu and 66Zn values.rnMy results demonstrated that (1) Copper was fractionated during adsorption on humic acid resulting in an isotope fractionation between the immobilized humic acid and the solution (65CuIHA-solution) of 0.26 ± 0.11‰ (2SD) and that the extent of fractionation was independent of pH and involved functional groups of the humic acid. (2) Soil genesis and plant cycling causes measurable Cu isotope fractionation in hydromorphic soils. The results suggested that an increasing number of redox cycles depleted 63Cu with increasing depth resulting in heavier 65Cu values. (3) Organic horizons usually had isotopically lighter Cu than mineral soils presumably because of the preferred uptake and recycling of 63Cu by plants. (4) In a strongly developed Podzol, eluviation zones had lighter and illuviation zones heavier 65Cu values because of the higher stability of organo-65Cu complexes compared to organo-63Cu complexes. In the Cambisols and a little developed Podzol, oxic weathering caused increasingly lighter 65Cu values with increasing depth, resulting in the opposite depth trend as in redoximorphic soils, because of the preferential vertical transport of 63Cu. (5) The 66Zn values were fractionated during the smelting process and isotopically light Zn was emitted allowing source identification of Zn pollution while 65Cu values were unaffected by the smelting and Cu emissions isotopically indistinguishable from soil. The 65Cu values in polluted soils became lighter down to a depth of 0.4 m indicating isotope fractionation during transport and a transport depth of 0.4 m in 60 years. 66Zn values had an opposite depth trend becoming heavier with depth because of fractionation by plant cycling, speciation changes, and mixing of native and smelter-derived Zn. rnCopper showed measurable isotope fractionation of approximately 1‰ in unpolluted soils, allowing to draw conclusions on plant cycling, transport, and redox processes occurring during soil genesis and 65Cu and 66Zn values in contaminated soils allow for conclusions on sources (in my study only possible for Zn), biogeochemical behavior, and depth of dislocation of Cu and Zn pollution in soil. I conclude that stable Cu and Zn isotope ratios are a suitable novel tool to trace long-term processes in soils which are difficult to assess otherwise.rn
Resumo:
The redox chemistry and the related surface phase behavior of Safranine (SAF) and Janus Green B (JGB) have been studied by means of cyclic voltammetry in combination with in situ Scanning Tunneling Microscopy using HOPG (Highly Oriented Pyrolytic Graphite) and single crystalline Cu(1 0 0) as model substrates, both revealing different widths of the accessible potential windows. JGB and SAF serve as prototypical heterocyclic suppressor/leveler additives that are used for the metallization of 3D-TSVs (3D Through Silicon Vias) following a classical "leveling" concept. SAF can be considered as the reductive decomposition product of JGB that is formed at the copper/electrolyte interface upon electroplating. Both additives reveal a pronounced pH-dependent redox-chemistry with redox-transitions lying close to or even beyond the anodic limit of the copper potential window. Affected by these redox-processes are in particular the aromatic cores of those heterocycles that can be (quasi)reversibly reduced by a two electron transfer process within the potential window of copper. Therefore we identify the reduced form of those dyes as the active components for the suppressing/leveling effect in copper plating. STM data clearly shows a dye surface phase behavior that is crucially determined by its potential-dependent redox-chemistry. This will be exemplarily discussed for the SAF dye. On chloride-modified Cu(1 0 0) mono-reduced SAF forms a structurally well-defined monolayer of cationic stacking polymers. However, this coupled anion/cation layer reveals only minor suppressing capabilities with respect to the copper dissolution and deposition processes. Complete reduction of the aromatic heterocycle finally leads to the 3D precipitation of hydrophobic reaction products. 3D clusters of this SAF precipitate are discussed as the active structural motif for the suppressing effect of these dyes. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Here, we present sedimentological, trace metal, and molecular evidence for tracking bottom water redox-state conditions during the past 12,500 years in nowadays sulfidic and meromictic Lake Cadagno (Switzerland). A 10.5 m long sediment core from the lake covering the Holocene period was investigated for concentration variations of the trace metals Mn and Mo (XRF core scanning and ICP-MS measurements), and for the presence of anoxygenic phototrophic sulfur bacteria (carotenoid pigment analysis and 16S rDNA real time PCR). Our trace metal analysis documents an oxic-intermediate-sulfidic redox-transition period beginning shortly after the lake formation similar to 12.5 kyr ago. The oxic period is characterized by low sedimentary Mn and Mo concentrations, as well as by the absence of any remnants of anoxygenic phototrophic sulfur bacteria. Enhanced accumulation/preservation of Mn (up to 5.6 wt%) in the sediments indicates an intermediate, Mn-enriched oxygenation state with fluctuating redox conditions during a similar to 2300-year long transition interval between similar to 12.1 and 9.8 kyr BP. We propose that the high Mn concentrations are the result of enhanced Mn2+ leaching from the sediments during reducing conditions and subsequent rapid precipitation of Mn-(oxyhydr) oxide minerals during episodic and short-term water-column mixing events mainly due to flood-induced underflows. At 9800 +/- 130 cal yr BP, a rapid transition to fully sulfidic conditions is indicated by the marked enrichment of Mo in the sediments (up to 490 ppm), accompanied by an abrupt drop in Mn concentrations and the increase of molecular biomarkers that indicate the presence of anoxygenic photosynthetic bacteria in the water column. Persistently high Mo concentrations >80 ppm provide evidence that sulfidic conditions prevailed thereafter until modern times, without any lasting hypolimnetic ventilation and reoxygenation. Hence, Lake Cadagno with its persistently stable chemocline offers a framework to study in great temporal detail over similar to 12 kyr the development of phototrophic sulfur bacteria communities and redox processes in a sulfidic environment, possibly depicting analogous conditions in an ancient ocean. Our study underscores the value of combining sedimentological, geochemical, and microbiological approaches to characterize paleo-environmental and -redox conditions in lacustrine and marine settings.
Resumo:
The detection and potential treatment of oxidative stress in biological systems has been explored using isoindoline-based nitroxide radicals. A novel tetraethyl-fluorescein nitroxide was synthesised for its use as a profluorescent probe for redox processes in biological systems. This tetraethyl system, as well as a tetramethyl-fluorescein nitroxide, were shown to be sensitive and selective probes for superoxide in vitro. The redox environment of cellular systems was also explored using the tetramethylfluorescein species based on its reduction to the hydroxylamine. Flow cytometry was employed to assess the extent of nitroxide reduction, reflecting the overall cellular redox environment. Treatment of normal fibroblasts with rotenone and 2-deoxyglucose resulted in an oxidising cellular environment as shown by the lack of reduction of the fluorescein-nitroxide system. Assessment of the tetraethyl-fluorescein nitroxide system in the same way demonstrated its enhanced resistance to reduction and offers the potential to detect and image biologically relevant reactive oxygen species directly. Importantly, these profluorescent nitroxide compounds were shown to be more effective than the more widely used and commercially available probes for reactive oxygen species such as 2’,7’-dichlorodihydrofluorescein diacetate. Fluorescence imaging of the tetramethyl-fluorescein nitroxide and a number of other rhodamine-nitroxide derivatives was undertaken, revealing the differential cellular localisation of these systems and thus their potential for the detection of redox changes in specific cellular compartments. As well as developing novel methods for the detection of oxidative stress, a number of novel isoindoline nitroxides were synthesised for their potential application as small-molecule antioxidants. These compounds incorporated known pharmacophores into the isoindoline-nitroxide structure in an attempt to increase their efficacy in biological systems. A primary and a secondary amine nitroxide were synthesised which incorporated the phenethylamine backbone of the sympathomimetic amine class of drugs. Initial assessment of the novel primary amine derivative indicated a protective effect comparable to that of 5-carboxy-1,1,3,3- tetramethylisoindolin-2-yloxyl. Methoxy-substituted nitroxides were also synthesised as potential antioxidants for their structural similarity to some amphetamine type stimulants. A copper-catalysed methodology provided access to both the mono- and di-substituted methoxy-nitroxides. Deprotection of the ethers in these compounds using boron tribromide successfully produced a phenolnitroxide, however the catechol moiety in the disubstituted derivative appeared to undergo reaction with the nitroxide to produce quinone-like degradation products. A novel fluoran-nitroxide was also synthesised from the methoxy-substituted nitroxide, providing a pH-sensitive spin probe. An amino-acid precursor containing a nitroxide moiety was also synthesised for its application as a dual-action antioxidant. N-Acetyl protection of the nitroxide radical was necessary prior to the Erlenmeyer reaction with N-acetyl glycine. Hydrolysis and reduction of the azlactone intermediate produced a novel amino acid precursor with significant potential as an effective antioxidant.
Resumo:
The driving force behind this study has been the need to develop and apply methods for investigating the hydrogeochemical processes of significance to water management and artificial groundwater recharge. Isotope partitioning of elements in the course of physicochemical processes produces isotopic variations to their natural reservoirs. Tracer property of the stable isotope abundances of oxygen, hydrogen and carbon has been applied to investigate hydrogeological processes in Finland. The work described here has initiated the use of stable isotope methods to achieve a better understanding of these processes in the shallow glacigenic formations of Finland. In addition, the regional precipitation and groundwater records will supplement the data of global precipitation, but as importantly, provide primary background data for hydrological studies. The isotopic composition of oxygen and hydrogen in Finnish groundwaters and atmospheric precipitation was determined in water samples collected during 1995 2005. Prior to this study, no detailed records existed on the spatial or annual variability of the isotopic composition of precipitation or groundwaters in Finland. Groundwaters and precipitation in Finland display a distinct spatial distribution of the isotopic ratios of oxygen and hydrogen. The depletion of the heavier isotopes as a function of increasing latitude is closely related to the local mean surface temperature. No significant differences were observed between the mean annual isotope ratios of oxygen and hydrogen in precipitation and those in local groundwaters. These results suggest that the link between the spatial variability in the isotopic composition of precipitation and local temperature is preserved in groundwaters. Artificial groundwater recharge to glaciogenic sedimentary formations offers many possibilities to apply the isotopic ratios of oxygen, hydrogen and carbon as natural isotopic tracers. In this study the systematics of dissolved carbon have been investigated in two geochemically different glacigenic groundwater formations: a typical esker aquifer at Tuusula, in southern Finland and a carbonate-bearing aquifer with a complex internal structure at Virttaankangas, in southwest Finland. Reducing the concentration of dissolved organic carbon (DOC) in water is a primary challenge in the process of artificial groundwater recharge. The carbon isotope method was used to as a tool to trace the role of redox processes in the decomposition of DOC. At the Tuusula site, artificial recharge leads to a significant decrease in the organic matter content of the infiltrated water. In total, 81% of the initial DOC present in the infiltrated water was removed in three successive stages of subsurface processes. Three distinct processes in the reduction of the DOC content were traced: The decomposition of dissolved organic carbon in the first stage of subsurface flow appeared to be the most significant part in DOC removal, whereas further decrease in DOC has been attributed to adsorption and finally to dilution with local groundwater. Here, isotope methods were used for the first time to quantify the processes of DOC removal in an artificial groundwater recharge. Groundwaters in the Virttaankangas aquifer are characterized by high pH values exceeding 9, which are exceptional for shallow aquifers on glaciated crystalline bedrock. The Virttaankangas sediments were discovered to contain trace amounts of fine grained, dispersed calcite, which has a high tendency to increase the pH of local groundwaters. Understanding the origin of the unusual geochemistry of the Virttaankangas groundwaters is an important issue for constraining the operation of the future artificial groundwater plant. The isotope ratios of oxygen and carbon in sedimentary carbonate minerals have been successfully applied to constrain the origin of the dispersed calcite in the Virttaankangas sediments. The isotopic and chemical characteristics of the groundwater in the distinct units of aquifer were observed to vary depending on the aquifer mineralogy, groundwater residence time and the openness of the system to soil CO2. The high pH values of > 9 have been related to dissolution of calcite into groundwater under closed or nearly closed system conditions relative to soil CO2, at a low partial pressure of CO2.
Resumo:
The boronic acid (pS)-1,2-NpFcB(OH)(2) (1) was obtained by treatment of the lithiated species (pS)-1,2-NpFcLi with B(O(i)Pr)(3), followed by acidic workup; subsequent dehydration gave the enantiomerically pure boroxine [(pS)-1,2-NpFcBO](3) (2) in 49% isolated yield. Multinuclear and 2D NMR spectroscopies, single-crystal X-ray diffraction, and elemental analysis served to confirm the structure of 2. In the solid-state structure, all three of the naphthyl groups point in one direction and all of the ferrocenyl moieties are placed on the opposite face of the boroxine ring, which is also the preferred conformation in solution according to a (1)H, (1)H-NOESY experiment. Cyclic voltammetry revealed three separate reversible oxidation events, which suggests significant communication between the ferrocenyl moieties. These redox processes experience a cathodic shift upon addition of 4-dimethylaminopyridine (DMAP) as a Lewis base. The six-membered ring is opened upon treatment with hot CHCl(3)/MeOH to form the methoxy species (pS)-1,2-NpFcB(OH)(OMe) (3), which can be converted back to the cycle 2 by dissolution in wet CHCl(3), followed by column chromatography on silica gel.