964 resultados para RED-CELL
Resumo:
Objective: To evaluate responses to self-administered brief questions regarding consumption of vegetables and fruit by comparison with blood levels of serum carotenoids and red-cell folate. Design: A cross-sectional study in which participants reported their usual intake of fruit and vegetables in servings per day, and serum levels of five carotenoids (α-carotene, β-carotene, β-cryptoxanthin, lutein/zeaxanthin and lycopene) and red-cell folate were measured. Serum carotenoid levels were determined by high-performance liquid chromatography, and red-cell folate by an automated immunoassay system. Settings and subjects: Between October and December 2000, a sample of 1598 adults aged 25 years and over, from six randomly selected urban centres in Queensland, Australia, were examined as part of a national study conducted to determine the prevalence of diabetes and associated cardiovascular risk factors. Results: Statistically significant (P<0.01) associations with vegetable and fruit intake (categorised into groups: ≤1 serving, 2–3 servings and ≥4 servings per day) were observed for α-carotene, β-carotene, β-cryptoxanthin, lutein/zeaxanthin and red-cell folate. The mean level of these carotenoids and of red-cell folate increased with increasing frequency of reported servings of vegetables and fruit, both before and after adjusting for potential confounding factors. A significant association with lycopene was observed only for vegetable intake before adjusting for confounders. Conclusions: These data indicate that brief questions may be a simple and valuable tool for monitoring vegetable and fruit intake in this population.
Resumo:
The mouse and human malarial parasites, Plasmodium berghei and Plasmodium falciparum, respectively, synthesize heme de novo following the standard pathway observed in animals despite the availability of large amounts of heme, derived from red cell hemoglobin, which is stored as hemozoin pigment, The enzymes, delta-aminolevulinate dehydrase (ALAD), coproporphyrinogen oxidase, and ferrochelatase are present at strikingly high levels in the P, berghei infected mouse red cell in vivo, The isolated parasite has low levels of ALAD and the data clearly indicate it to be of red cell origin. The purified enzyme preparations from the uninfected red cell and the parasite are identical in kinetic properties, subunit molecular weight, cross-reaction with antibodies to the human enzyme, and N-terminal amino acid sequence. Immunogold electron microscopy of the infected culture indicates that the enzyme is present inside the parasite and, therefore, is not a contaminant, The parasite derives functional ALAD from the host and the enzyme binds specifically to isolated parasite membrane in vitro, suggestive of the involvement of a receptor in its translocation into the parasite, While, ALAD, coproporphyrinogen oxidase, and ferrochelatase from the parasite and the uninfected red cell supernatant have identical subunit molecular weights on SDS-polyacrylamide gel electrophoresis and show immunological cross-reaction with antibodies to the human enzymes, as revealed by Western analysis, the first enzyme of the pathway, namely, delta-aminolevulinate synthase (ALAS) in the parasite, unlike that of the red cell host, does not cross-react with antibodies to the human enzyme, However, ALAS enzyme activity in the parasite is higher than that of the infected red cell supernatant. We therefore conclude that the parasite, while making its own ALAS, imports ALAD and perhaps most of the other enzymes of the pathway from the host to synthesize heme de novo, and this would enable it to segregate this heme from the heme derived from red cell hemoglobin degradation, ALAS of the parasite and the receptor(s) involved in the translocation of the host enzymes into the parasite would be unique drug targets.
Resumo:
Background Recommendations by the UK Department of Health suggest that protection from neural tube defects (NTD) can be achieved through intakes of an extra 400 mu g daily of folate/folic acid as natural food, foods fortified with folic acid, or supplements. The assumption is that all three routes of intervention would have equal effects on folate status.
Methods We assessed the effectiveness of these suggested routes of intervention in optimising folate status. 62 women were recruited from the University staff and students to take part in a 3-month intervention study. Participants were randomly assigned to one of the following five groups: folic acid supplement (400 mu g/day; I); folic-acid-fortified foods (an additional 400 mu g/day; II); dietary folate (an additional 400 mu g/day; III); dietary advice (IV), and control (V). Responses to intervention were assessed as changes in red-cell folate between preintervention and postintervention values.
Findings 41 women completed the intervention study. Red-cell folate concentrations increased significantly over the 3 months in the groups taking folic acid supplements (group I) or food fortified with folic acid (group II) only (p<0.01 for both groups). By contrast, although aggressive intervention with dietary folate (group III) or dietary advice (group IV) significantly increased intake of food folate (p<0.001 and p<0.05, respectively), there was no significant change in folate status.
Interpretation We have shown that compared with supplements and fortified food, consumption of extra folate as natural food folate is relatively ineffective at increasing folate status. We believe that advice to women to consume folate-rich foods as a means to optimise folate status is misleading.
Resumo:
Plasma membrane-derived vesicles (PMVs) or microparticles are vesicles (0.1–1 μm in diameter) released from the plasma membrane of all blood cell types under a variety of biochemical and pathological conditions. PMVs contain cytoskeletal elements and some surface markers from the parent cell but lack a nucleus and are unable to synthesise macromolecules. They are also defined on the basis that in most cases PMVs express varying amounts of the cytosolic leaflet lipid phosphatidylserine, which is externalised during activation on their surface. This marks the PMV as a biologically distinct entity from that of its parent cell, despite containing surface markers from the original cell, and also explains its role in events such as phagocytosis and thrombosis. There is currently a large amount of variation between investigators with regard to the pre-analytical steps employed in isolating red cell PMVs or RPMVs (which are slightly smaller than most PMVs), with key differences being centrifugation and sample storage conditions, which often leads to result variability. Unfortunately, standardization of preparation and detection methods has not yet been achieved. This review highlights and critically discusses the variables contributing to differences in results obtained by investigators, bringing to light numerous studies of which RPMVs have been analysed but have not yet been the subject of a review.
Resumo:
Pure red cell aplasia (PRCA) is a disease with important relationships to autoimmune mechanisms. Although some autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus, have been associated with PRCA, until this point no studies have described the association between PRCA and primary antiphospholipid syndrome (APS). This is the first case report of PRCA associated with primary APS in a 39-year-old man with acute heart failure secondary to an anaemic condition that was diagnosed as pure red cell aplasia. The patient was later diagnosed with retinal artery and vein thromboses and bilateral deep venous thromboses of the femoral and popliteal veins. The most common causes of PRCA and other thrombophilias were ruled out in this investigation through complementary tests. This association with APS adds a new possibility to the study of PRCA pathophysiology.
Resumo:
Objective To determine variables that predict the rate of decline in fetal hemoglobin levels in alloimmune disease. Method Retrospective review of singleton pregnancies that underwent first and second intrauterine transfusions for treatment of fetal anemia because of maternal Rh alloimmunization in a tertiary referral center. Results Forty-one first intrauterine transfusions were performed at 26.1?weeks (standard deviation, SD, 4.6), mean volume of blood transfused was 44.4?mL (SD 23.5) and estimated feto-placental volume expansion was 51.3% (SD 14.5%). Between first and second transfusion, hemoglobin levels reduced on average 0.40?g/dl/day (SD 0.25). Stepwise multiple regression analysis demonstrated that this rate significantly correlated with hemoglobin levels after the first transfusion, the interval between both procedures, and middle cerebral artery systolic velocity before the second transfusion. Conclusion The rate of decline in fetal hemoglobin levels between first and second transfusions in alloimmune disease can be predicted by a combination of hemoglobin levels after the first transfusion, interval between both procedures, and middle cerebral artery systolic velocity before the second transfusion. (C) 2012 John Wiley & Sons, Ltd.
Resumo:
[EN] Erythropoietin (Epo) has been suggested to affect plasma volume, and would thereby possess a mechanism apart from erythropoiesis to increase arterial oxygen content. This, and potential underlying mechanisms, were tested in eight healthy subjects receiving 5000 IU recombinant human Epo (rHuEpo) for 15 weeks at a dose frequency aimed to increase and maintain haematocrit at approximately 50%. Red blood cell volume was increased from 2933 +/- 402 ml before rHuEpo treatment to 3210 +/- 356 (P < 0.01), 3117 +/- 554 (P < 0.05), and 3172 +/- 561 ml (P < 0.01) after 5, 11 and 13 weeks, respectively. This was accompanied by a decrease in plasma volume from 3645 +/- 538 ml before rHuEpo treatment to 3267 +/- 333 (P < 0.01), 3119 +/- 499 (P < 0.05), and 3323 +/- 521 ml (P < 0.01) after 5, 11 and 13 weeks, respectively. Concomitantly, plasma renin activity and aldosterone concentration were reduced. This maintained blood volume relatively unchanged, with a slight transient decrease at week 11, such that blood volume was 6578 +/- 839 ml before rHuEpo treatment, and 6477 +/- 573 (NS), 6236 +/- 908 (P < 0.05), and 6495 +/- 935 ml (NS), after 5, 11 and 13 weeks of treatment. We conclude that Epo treatment in healthy humans induces an elevation in haemoglobin concentration by two mechanisms: (i) an increase in red cell volume; and (ii) a decrease in plasma volume, which is probably mediated by a downregulation of the rennin-angiotensin-aldosterone axis. Since the relative contribution of plasma volume changes to the increments in arterial oxygen content was between 37.9 and 53.9% during the study period, this mechanism seems as important for increasing arterial oxygen content as the well-known erythropoietic effect of Epo.