984 resultados para RECYCLABLE CATALYSTS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, platinum nanoparticles were prepared by in situ reduction with polyethylene glycols (PEGs). The catalytic performance of Pt nanoparticles immobilized in PEGs (Pt-PEGs) is discussed for the hydrogenation of o-chloronitrobenzene (o-CNB). A high selectivity to o-chloroaniline (o-CAN) of about 99.7% was obtained with the Pt-PEGs catalysts at the complete conversion of o-CNB, which is much higher than that (83.4%) obtained over the conventional catalyst of Pt/C. The Pt nanoparticies could be immobilized in PEGs stably and recycled for four times with the same activity and selectivity. It presents a promising performance in the hydrogenation and its wide application in catalytic reactions is expected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several novel phosphoramidites have been prepared by reaction of the primary amines para-vinylaniline, ortho-anisidine, 2-methoxyphenyl(4-vinylbenzyl)amine, 8-aminoquinoline and 3-vinyl-8-aminoquinoline with (S)-1,1'-bi-2-naphthylchlorophosphite, in the presence of base. Rhodium(l) complexes of these phosphoramidites catalyse the asymmetric hydrogenation of dimethylitaconate and dehydroamino acids and esters giving ee values up to 95%. Soluble non-cross linked polymers of the para-vinylaniline and 3-vinyl-8-aminoquinoline-based phosphoramidites have been prepared by free radical co-polymerisation with styrene in the presence of AIBN as initiator. The corresponding [Rh(COD)](+) complexes serve as recyclable catalysts for the asymmetric hydrogenation dimethylitaconate and dehydroamino acids and esters to give ee values up to 80%. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A magnetically recoverable Pt(0) catalyst was prepared by in situ H(2) reduction of Pt(2+) species bound to an amino modified silica-coated magnetic nanoparticles. Compared to ordinary silica (maximum uptake Pt 0.03 wt%), the amino-functionalized silica surfaces were loaded with 1.95 wt% of metal. The supported Pt(0) nanoparticles exhibit high catalytic activity in the hydrogenation of alkenes and ketones under solventless mild reaction conditions. Partially hydrogenated products could also be isolated. The magnetic property of the catalyst grants a fast and efficient product isolation compared to traditional methods used in heterogeneous systems that generally make use of time- and solvent-consuming procedures. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to tune the structural and chemical properties of colloidal nanoparticles (NPs), make them highly advantageous for studying activity and selectivity dependent catalytic behaviour. Incorporating pre-synthesized colloidal NPs into porous supports materials remains a challenge due to poor wetting and pore permeability. In this report monodisperse, composition controlled AgPd alloy NPs were synthesised and embedded into SBA-15 using supercritical carbon dioxide and hexane. Supercritical fluid impregnation resulted in high metal loading without the requirement for surface pre-treatments. The catalytic activity, reaction profiles and recyclability of the alloy NPs embedded in SBA-15 and immobilised on non-porous SiO2 are evaluated. The NPs incorporated within the SBA-15 porous network showed significantly greater recyclability performance compared to non-porous SiO2.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The synthesis of nickel catalysts for industrial applications is relatively simple; however, nickel oxidation is usually difficult to avoid, which makes it challenging to optimize catalytic activities, metal loadings, and high-temperature activation steps. A robust, oxidation-resistant and very active nickel catalyst was prepared by controlled decomposition of the organometallic precursor [bis(1,5-cyclooctadiene)nickel(0)], Ni(COD)(2), over silica-coated magnetite (Fe3O4@SiO2). The sample is mostly Ni(0), and surface oxidized species formed after exposure to air are easily reduced in situ during hydrogenation of cyclohexene under mild conditions recovering the initial activity. This unique behavior may benefit several other reactions that are likely to proceed via Ni heterogeneous catalysis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this Account is to provide an overview of our current research activities on the design and modification of superparamagnetic nanomaterials for application in the field of magnetic separation and catalysis. First, an introduction of magnetism and magnetic separation is done. Then, the synthetic strategies that have been developed for generating superparamagnetic nanoparticles spherically coated by silica and other oxides, with a focus on well characterized systems prepared by methods that generate samples of high quality and easy to scale- up, are discussed. A set of magnetically recoverable catalysts prepared in our research group by the unique combination of superparamagnetic supports and metal nanoparticles is highlighted. This Account is concluded with personal remarks and perspectives on this research field.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The synthesis and characterization methods of metal nanoparticles (NPs) have advanced greatly in the last few decades, allowing an increasing understanding of structure-property-performance relationships. However, the role played by the ligands used as stabilizers for metal NPs synthesis or for NPs immobilization on solid supports has been underestimated. Here, we highlight some recent progress in the preparation of supported metal NPs with the assistance of ligands in solution or grafted on solid supports, a modified deposition-reduction method, with special attention to the effects on NPs size, metal-support interactions and, more importantly, catalytic activities. After presenting the general strategies in metal NP synthesis assisted by ligands grafted on solid supports, we highlight some recent progress in the deposition of pre-formed colloidal NPs on functionalized solids. Another important aspect that will be reviewed is related to the separation and recovery of NPs. Finally, we will outline our personal understanding and perspectives on the use of supported metal NPs prepared through ligand-assisted methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ag/SiO2 prepared by an in situ reduction method are found, for the first time, to be highly effective and recyclable catalysts for the selective hydrogenation of a range of chloronitrobenzes to their corresponding chloroanilines, which are of great potential as industrially viable and cheap novel catalysts for the production of chloroanilines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stable chromium, molybdenum, tungsten, manganese, rhenium, ruthenium, osmium, cobalt, rhodium, and iridium metal nanoparticles (MNPs) have been reproducibly obtained by facile, rapid (3 min), and energysaving 10 W microwave irradiation (MWI) under an argon atmosphere from their metal–carbonyl precursors [Mx(CO)y] in the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]). This MWI synthesis is compared to UV-photolytic (1000 W, 15 min) or conventional thermal decomposition (180–2508C, 6–12 h) of [Mx(CO)y] in ILs. The MWIobtained nanoparticles have a very small (<5 nm) and uniform size and are prepared without any additional stabilizers or capping molecules as long-term stable M-NP/IL dispersions (characterization by transmission electron microscopy (TEM), transmission electron diffraction (TED), and dynamic light scattering (DLS)). The ruthenium, rhodium, or iridium nanoparticle/IL dispersions are highly active
and easily recyclable catalysts for the biphasic liquid–liquid hydrogenation of cyclohexene to cyclohexane with activities of up to 522 (mol product)(mol Ru)1h1 and 884 (mol product)(molRh)1h1 and give almost quantitative conversion within 2 h at 10 bar H2 and 908C. Catalyst poisoning experiments with CS2 (0.05 equiv per Ru) suggest a heterogeneous surface catalysis of RuNPs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We here report the preparation of supported palladium nanoparticles (NPs) stabilized by pendant phosphine groups by reacting a palladium complex containing the ligand 2-(diphenylphosphino)benzaldehyde with an amino-functionalized silica surface The Pd nanocatalyst is active for Suzuki cross-coupling reaction avoiding any addition of other sources of phosphine ligands The Pd intermediates and Pd NPs were characterized by solid-state nuclear magnetic resonance and transmission electron microscopy techniques The synthetic method was also applied to prepare magnetically recoverable Pd NPs leading to a catalyst that could be reused for up to 10 recycles In summary we gathered the advantages of heterogeneous catalysis magnetic separation and enhanced catalytic activity of palladium promoted by phosphine ligands to synthesize a new catalyst for Suzuki cross-coupling reactions The Pd NP catalyst prepared on the phosphine-functionalized support was more active and selective than a similar Pd NP catalyst prepared on an amino-functionalized support (C) 2010 Elsevier Inc All rights reserved

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Imidazolium-tagged bis(oxazolines) have been prepared and used as chiral ligands in the copper(II)-catalysed Diels-Alder reaction of N-acryloyl- and N-crotonoyloxazolidinones with cyclopentadiene and 1,3-cyclohexadiene in the ionic liquid 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [emim][NTf2]. A significant and substantial enhancement in the rate and enantioselectivity was achieved in [emim][NTf2] compared with dichloromethane. For example, complete conversion and enantioselectivities up to 95 % were obtained for the reaction between N-acryloyloxazolidinone and cyclopentadiene within 2 min in [emim][NTf2] whereas the corresponding reaction in dichloromethane required 60 min to reach completion and gave an ee of only 16 %. The enhanced rates obtained in the ionic liquid enabled a catalyst loading as low as 0.5 mol % to give complete conversion within 2 min while retaining the same level of enantioselectivity. The imidazolium-tagged catalysts can be recycled ten times without any loss in activity or enantioselectivity and showed much higher affinity for the ionic liquid phase during the recycle procedure than the analogous uncharged ligand.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Molecular hydrogenation catalysts have been co-entrapped with the ionic liquid [Bmim]NTf(2) inside a silica matrix by a sot-gel method. These catalytic ionogels have been compared to simple catalyst-doped glasses, the parent homogeneous catalysts, commercial heterogeneous catalysts, and Rh-doped mesoporous silica. The most active ionogel has been characterised by transmission electron microscopy, X-ray photoelectron spectroscopy, and solid state NMR before and after catalysis. The ionogel catalysts were found to be remarkably active, recyclable and resistant to chemical change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heterogeneous PPh3-Rh/SiO2 catalysts for hydroformylation of olefins, prepared by direct doping of phosphine onto the heterogeneous Rh/SiO2 precursor, exhibited high activity and selectivity towards aldehydes, which originated from chemical coordination bond between the phosphine and Rh metal nantoparticles on the SiO2 support.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Heck reaction of iodobenzene and methyl acrylate was investigated with CO2-philic Pd complex catalysts having fluorous ponytails and the organic base triethylamine (Et3N) in the presence of CO2 under solventless conditions at 80 degrees C. The catalysts are not soluble in the organic phase in the absence Of CO2 and the reaction occurs in a solid-liquid biphasic system. When the organic liquid mixture is pressurized by CO2, CO2 is dissolved into the organic phase and this promotes the dissolution of the I'd complex catalysts. As a result, the Heck reaction occurs homogeneously in the organic phase, which enhances the rate of reaction. This positive effect Of CO2 pressurization competes with the negative effect that the reacting species are diluted by an increasing amount of CO2 molecules dissolved. Thus, the maximum conversion appears at a CO2 pressure of around 4 MPa under the present reaction conditions. The catalysts are separated in the solid granules by depressurization and are recyclable without loss of activity after washing with n-hexane and/or water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Palladium nanoparticles have been immobilized into an amino-functionalized metal-organic framework (MOF), MIL-101Cr-NH2, to form Pd@MIL-101Cr-NH2. Four materials with different loadings of palladium have been prepared (denoted as 4-, 8-, 12-, and 16wt%Pd@MIL-101Cr-NH2). The effects of catalyst loading and the size and distribution of the Pd nanoparticles on the catalytic performance have been studied. The catalysts were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, powder X-ray diffraction (PXRD), N-2-sorption isotherms, elemental analysis, and thermogravimetric analysis (TGA). To better characterize the palladium nanoparticles and their distribution in MIL-101Cr-NH2, electron tomography was employed to reconstruct the 3D volume of 8wt%Pd@MIL-101Cr-NH2 particles. The pair distribution functions (PDFs) of the samples were extracted from total scattering experiments using high-energy X-rays (60keV). The catalytic activity of the four MOF materials with different loadings of palladium nanoparticles was studied in the Suzuki-Miyaura cross-coupling reaction. The best catalytic performance was obtained with the MOF that contained 8wt% palladium nanoparticles. The metallic palladium nanoparticles were homogeneously distributed, with an average size of 2.6nm. Excellent yields were obtained for a wide scope of substrates under remarkably mild conditions (water, aerobic conditions, room temperature, catalyst loading as low as 0.15mol%). The material can be recycled at least 10times without alteration of its catalytic properties.