911 resultados para RECRUITMENT MANEUVER
Resumo:
Objective. The aim of this study is to test the hypothesis that recruitment maneuvers (RMs) might act differently in models of pulmonary (p) and extrapulmonary (exp) acute lung injury (ALI) with similar transpulmonary pressure changes. Design: Prospective, randomized, controlled experimental study. Setting. University research laboratory. Subjects: Wistar rats were randomly divided into four groups. In control groups, sterile saline solution was intratracheally (0.1 mL, Cp) or intraperitoneally (1 mL, Cexp) injected, whereas ALI animals received Escherichia coli lipopolysaccharide intratracheally (100 jig, ALIp) or intraperitoneally (1 mg, ALIexp). After 24 hrs, animals were mechanically ventilated (tidal volume, 6 mL/kg; positive end-expiratory pressure, 5 cm H2O) and three RMs (pressure inflations to 40 cm H2O for 40 secs, 1 min apart) applied. Measurements and Main Results. Pao(2), lung resistive and viscoelastic pressures, static elastance, lung histology (light and electron microscopy), and type III procollagen messenger RNA expression in pulmonary tissue were measured before RMs and at the end of 1 hr of mechanical ventilation. Mechanical variables, gas exchange, and the fraction of area of alveolar collapse were similar in both ALI groups. After RMs, lung resistive and viscoelastic pressures and static elastance decreased more in ALIexp (255%,180%, and 118%, respectively) than in ALIp (103%, 59%, and 89%, respectively). The amount of atelectasis decreased more in ALIexp than in ALIp (from 58% to 19% and from 59% to 33%, respectively). RMs augmented type III procollagen messenger RNA expression only in the ALIp group (19%), associated with worsening in alveolar epithelium injury but no capillary endothelium lesion, whereas the ALIexp group showed a minor detachment of the alveolar capillary membrane. Conclusions. Given the same transpulmonary pressures, RMs are more effective at opening collapsed alveoli in ALIexp than in ALIp, thus improving lung mechanics and oxygenation with limited damage to alveolar epithelium.
Resumo:
Objective: In acute lung injury, recruitment maneuvers have been used to open collapsed lungs and set positive end-expiratory pressure, but their effectiveness may depend on the degree of lung injury. This study uses a single experimental model with different degrees of lung injury and tests the hypothesis that recruitment maneuvers may have beneficial or deleterious effects depending on the severity of acute lung injury. We speculated that recruitment maneuvers may worsen lung mechanical stress in the presence of alveolar edema. Design: Prospective, randomized, controlled experimental study. Setting: University research laboratory. Subjects: Thirty-six Wistar rats randomly divided into three groups (n = 12 per group). Interventions: In the control group, saline was intraperitoneally injected, whereas moderate and severe acute lung injury animals received paraquat intraperitoneally (20 mg/kg [moderate acute lung injury] and 25 mg/kg [severe acute lung injury]). After 24 hrs, animals were further randomized into subgroups (n = 6/each) to be recruited (recruitment maneuvers: 40 cm H(2)O continuous positive airway pressure for 40 secs) or not, followed by 1 hr of protective mechanical ventilation (tidal volume, 6 mL/kg; positive end-expiratory pressure, 5 cm H(2)O). Measurements and Main Results: Only severe acute lung injury caused alveolar edema. The amounts of alveolar collapse were similar in the acute lung injury groups. Static lung elastance, viscoelastic pressure, hyperinflation, lung, liver, and kidney cell apoptosis, and type 3 procollagen and interleukin-6 mRNA expressions in lung tissue were more elevated in severe acute lung injury than in moderate acute lung injury. After recruitment maneuvers, static lung elastance, viscoelastic pressure, and alveolar collapse were lower in moderate acute lung injury than in severe acute lung injury. Recruitment maneuvers reduced interleukin-6 expression with a minor detachment of the alveolar capillary membrane in moderate acute lung injury. In severe acute lung injury, recruitment maneuvers were associated with hyperinflation, increased apoptosis of lung and kidney, expression of type 3 procollagen, and worsened alveolar capillary injury. Conclusions: In the presence of alveolar edema, regional mechanical heterogeneities, and hyperinflation, recruitment maneuvers promoted a modest but consistent increase in inflammatory and fibrogenic response, which may have worsened lung function and potentiated alveolar and renal epithelial injury. (Crit Care Med 2010; 38: 2207-2214)
Resumo:
Introduction: Recruitment maneuvers (RMs) seem to be more effective in extrapulmonary acute lung injury (ALI), caused mainly by sepsis, than in pulmonary ALI. Nevertheless, the maintenance of adequate volemic status is particularly challenging in sepsis. Since the interaction between volemic status and RMs is not well established, we investigated the effects of RMs on lung and distal organs in the presence of hypovolemia, normovolemia, and hypervolemia in a model of extrapulmonary lung injury induced by sepsis. Methods: ALI was induced by cecal ligation and puncture surgery in 66 Wistar rats. After 48 h, animals were anesthetized, mechanically ventilated and randomly assigned to 3 volemic status (n = 22/group): 1) hypovolemia induced by blood drainage at mean arterial pressure (MAP)approximate to 70 mmHg; 2) normovolemia (MAP approximate to 100 mmHg), and 3) hypervolemia with colloid administration to achieve a MAP approximate to 130 mmHg. In each group, animals were further randomized to be recruited (CPAP = 40 cm H(2)O for 40 s) or not (NR) (n = 11/group), followed by 1 h of protective mechanical ventilation. Echocardiography, arterial blood gases, static lung elastance (Est, L), histology (light and electron microscopy), lung wet-to-dry (W/D) ratio, interleukin (IL)-6, IL-1 beta, caspase-3, type III procollagen (PCIII), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) mRNA expressions in lung tissue, as well as lung and distal organ epithelial cell apoptosis were analyzed. Results: We observed that: 1) hypervolemia increased lung W/D ratio with impairment of oxygenation and Est, L, and was associated with alveolar and endothelial cell damage and increased IL-6, VCAM-1, and ICAM-1 mRNA expressions; and 2) RM reduced alveolar collapse independent of volemic status. In hypervolemic animals, RM improved oxygenation above the levels observed with the use of positive-end expiratory pressure (PEEP), but increased lung injury and led to higher inflammatory and fibrogenetic responses. Conclusions: Volemic status should be taken into account during RMs, since in this sepsis-induced ALI model hypervolemia promoted and potentiated lung injury compared to hypo-and normovolemia.
Resumo:
Background: In acute lung injury positive end-expiratory pressure (PEEP) and recruitment maneuver are proposed to optimize arterial oxygenation. The aim of the study was to evaluate the impact of such a strategy on lung histological inflammation and hyperinflation in pigs with acid aspiration-induced lung injury. Methods: Forty-seven pigs were randomly allocated in seven groups: (1) controls spontaneously breathing; (2) without lung injury, PEEP 5 cm H2O; (3) without lung injury, PEEP titration; (4) without lung injury, PEEP titration + recruitment maneuver; (5) with lung injury, PEEP 5 cm H2O; (6) with lung injury, PEEP titration; and (7) with lung injury, PEEP titration + recruitment maneuver. Acute lung injury was induced by intratracheal instillation of hydrochloric acid. PEEP titration was performed by incremental and decremental PEEP from 5 to 20 cm H2O for optimizing arterial oxygenation. Three recruitment maneuvers (pressure of 40 cm H2O maintained for 20 s) were applied to the assigned groups at each PEEP level. Proportion of lung inflammation, hemorrhage, edema, and alveolar wall disruption were recorded on each histological field. Mean alveolar area was measured in the aerated lung regions. Results: Acid aspiration increased mean alveolar area and produced alveolar wall disruption, lung edema, alveolar hemorrhage, and lung inflammation. PEEP titration significantly improved arterial oxygenation but simultaneously increased lung inflammation in juxta-diaphragmatic lung regions. Recruitment maneuver during PEEP titration did not induce additional increase in lung inflammation and alveolar hyperinflation. Conclusion: In a porcine model of acid aspiration-induced lung injury, PEEP titration aimed at optimizing arterial oxygenation, substantially increased lung inflammation. Recruitment maneuvers further improved arterial oxygenation without additional effects on inflammation and hyperinflation.
Resumo:
Abstract Objective This case report describes an unusual presentation of right upper lobe atelectasis associated with refractory hypoxemia to conventional alveolar recruitment maneuvers in a patient soon after coronary artery bypass grafting surgery. Method Results The alveolar recruitment with PEEP = 40cmH2O improved the patient’s atelectasis and hypoxemia. Conclusion In the present report, the unusual alveolar recruitment maneuver with PEEP 40cmH2O showed to be safe and efficient to reverse refractory hypoxemia and uncommon atelectasis in a patient after cardiac surgery.
Resumo:
OBJECTIVE: To evaluate pulmonary and cardiovascular effects of a recruitment maneuver (RM) combined with positive end-expiratory pressure (PEEP) during total intravenous anesthesia in ponies. ANIMALS: 6 healthy adult Shetland ponies. PROCEDURE: After premedication with detomidine (10 microg/kg, IV), anesthesia was induced with climazolam (0.06 mg/kg, IV) and ketamine (2.2 mg/kg, IV) and maintained with a constant rate infusion of detomidine (0.024 mg/kg/h), climazolam (0.036 mg/kg/h), and ketamine (2.4 mg/kg/h). The RM was preceded by an incremental PEEP titration and followed by a decremental PEEP titration, both at a constant airway pressure difference (deltaP) of 20 cm H2O. The RM consisted of a stepwise increase in deltaP by 25, 30, and 35 cm H2O obtained by increasing peak inspiratory pressure (PIP) to 45, 50, and 55 cm H2O, while maintaining PEEP at 20 cm H2O. Hemodynamic and pulmonary variables were analyzed at every step of the PEEP titration-RM. RESULTS: During the PEEP titration-RM, there was a significant increase in PaO 2 (+12%), dynamic compliance (+ 62%), and heart rate (+17%) and a decrease in shunt (-19%) and mean arterial blood pressure (-21%) was recorded. Cardiac output remained stable. CONCLUSIONS AND CLINICAL RELEVANCE: Although baseline oxygenation was high, Pa(O2) and dynamic compliance further increased during the RM. Despite the use of high PIP and PEEP and a high tidal volume, limited cardiovascular compromise was detected. A PEEP titration-RM may be used to improve oxygenation in anesthetized ponies. During stable hemodynamic conditions, PEEP titration-RM can be performed with acceptable adverse cardiovascular effects.
Resumo:
INTRODUCTION: The objective was to study the effects of a lung recruitment procedure by stepwise increases of mean airway pressure upon organ blood flow and hemodynamics during high-frequency oscillatory ventilation (HFOV) versus pressure-controlled ventilation (PCV) in experimental lung injury. METHODS: Lung damage was induced by repeated lung lavages in seven anesthetized pigs (23-26 kg). In randomized order, HFOV and PCV were performed with a fixed sequence of mean airway pressure increases (20, 25, and 30 mbar every 30 minutes). The transpulmonary pressure, systemic hemodynamics, intracranial pressure, cerebral perfusion pressure, organ blood flow (fluorescent microspheres), arterial and mixed venous blood gases, and calculated pulmonary shunt were determined at each mean airway pressure setting. RESULTS: The transpulmonary pressure increased during lung recruitment (HFOV, from 15 +/- 3 mbar to 22 +/- 2 mbar, P < 0.05; PCV, from 15 +/- 3 mbar to 23 +/- 2 mbar, P < 0.05), and high airway pressures resulted in elevated left ventricular end-diastolic pressure (HFOV, from 3 +/- 1 mmHg to 6 +/- 3 mmHg, P < 0.05; PCV, from 2 +/- 1 mmHg to 7 +/- 3 mmHg, P < 0.05), pulmonary artery occlusion pressure (HFOV, from 12 +/- 2 mmHg to 16 +/- 2 mmHg, P < 0.05; PCV, from 13 +/- 2 mmHg to 15 +/- 2 mmHg, P < 0.05), and intracranial pressure (HFOV, from 14 +/- 2 mmHg to 16 +/- 2 mmHg, P < 0.05; PCV, from 15 +/- 3 mmHg to 17 +/- 2 mmHg, P < 0.05). Simultaneously, the mean arterial pressure (HFOV, from 89 +/- 7 mmHg to 79 +/- 9 mmHg, P < 0.05; PCV, from 91 +/- 8 mmHg to 81 +/- 8 mmHg, P < 0.05), cardiac output (HFOV, from 3.9 +/- 0.4 l/minute to 3.5 +/- 0.3 l/minute, P < 0.05; PCV, from 3.8 +/- 0.6 l/minute to 3.4 +/- 0.3 l/minute, P < 0.05), and stroke volume (HFOV, from 32 +/- 7 ml to 28 +/- 5 ml, P < 0.05; PCV, from 31 +/- 2 ml to 26 +/- 4 ml, P < 0.05) decreased. Blood flows to the heart, brain, kidneys and jejunum were maintained. Oxygenation improved and the pulmonary shunt fraction decreased below 10% (HFOV, P < 0.05; PCV, P < 0.05). We detected no differences between HFOV and PCV at comparable transpulmonary pressures. CONCLUSION: A typical recruitment procedure at the initiation of HFOV improved oxygenation but also decreased systemic hemodynamics at high transpulmonary pressures when no changes of vasoactive drugs and fluid management were performed. Blood flow to the organs was not affected during lung recruitment. These effects were independent of the ventilator mode applied.
Resumo:
Supporting patients with acute respiratory distress syndrome (ARDS), using a protective mechanical ventilation strategy characterized by low tidal volume and limitation of positive end-expiratory pressure (PEEP) is a standard practice in the intensive care unit. However, these strategies can promote lung de-recruitment, leading to the cyclic closing and reopening of collapsed alveoli and small airways. Recruitment maneuvers (RM) can be used to augment other methods, like positive end-expiratory pressure and positioning, to improve aerated lung volume. Clinical practice varies widely, and the optimal method and patient selection for recruitment maneuvers have not been determined, considerable uncertainty remaining regarding the appropriateness of RM. This review aims to discuss recent findings about the available types of RM, and compare the effectiveness, indications and adverse effects among them, as well as their impact on morbidity and mortality in ARDS patients. Recent developments include experimental and clinical evidence that a stepwise extended recruitment maneuver may cause an improvement in aerated lung volume and decrease the biological impact seen with the traditionally used sustained inflation, with less adverse effects. Prone positioning can reduce mortality in severe ARDS patients and may be an useful adjunct to recruitment maneuvers and advanced ventilatory strategies, such noisy ventilation and BIVENT, which have been useful in providing lung recruitment.
Resumo:
Background: Acute respiratory distress syndrome (ARDS) is associated with high in-hospital mortality. Alveolar recruitment followed by ventilation at optimal titrated PEEP may reduce ventilator-induced lung injury and improve oxygenation in patients with ARDS, but the effects on mortality and other clinical outcomes remain unknown. This article reports the rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART). Methods/Design: ART is a pragmatic, multicenter, randomized (concealed), controlled trial, which aims to determine if maximum stepwise alveolar recruitment associated with PEEP titration is able to increase 28-day survival in patients with ARDS compared to conventional treatment (ARDSNet strategy). We will enroll adult patients with ARDS of less than 72 h duration. The intervention group will receive an alveolar recruitment maneuver, with stepwise increases of PEEP achieving 45 cmH(2)O and peak pressure of 60 cmH2O, followed by ventilation with optimal PEEP titrated according to the static compliance of the respiratory system. In the control group, mechanical ventilation will follow a conventional protocol (ARDSNet). In both groups, we will use controlled volume mode with low tidal volumes (4 to 6 mL/kg of predicted body weight) and targeting plateau pressure <= 30 cmH2O. The primary outcome is 28-day survival, and the secondary outcomes are: length of ICU stay; length of hospital stay; pneumothorax requiring chest tube during first 7 days; barotrauma during first 7 days; mechanical ventilation-free days from days 1 to 28; ICU, in-hospital, and 6-month survival. ART is an event-guided trial planned to last until 520 events (deaths within 28 days) are observed. These events allow detection of a hazard ratio of 0.75, with 90% power and two-tailed type I error of 5%. All analysis will follow the intention-to-treat principle. Discussion: If the ART strategy with maximum recruitment and PEEP titration improves 28-day survival, this will represent a notable advance to the care of ARDS patients. Conversely, if the ART strategy is similar or inferior to the current evidence-based strategy (ARDSNet), this should also change current practice as many institutions routinely employ recruitment maneuvers and set PEEP levels according to some titration method.
Resumo:
Lung recruitment maneuvers (RMs), used to reopen atelectatic lung units and to improve oxygenation during mechanical ventilation, may result in hemodynamic impairment. We hypothesize that pulmonary arterial hypertension aggravates the consequences of RMs in the splanchnic circulation. Twelve anesthetized pigs underwent laparotomy and prolonged postoperative ventilation. Systemic, regional, and organ blood flows were monitored. After 6 h (= baseline), a recruitment maneuver was performed with sustained inflation of the lungs. Thereafter, the pigs were randomly assigned to group C (control, n = 6) or group E with endotoxin-induced pulmonary arterial hypertension (n = 6). Endotoxemia resulted in a normotensive and hyperdynamic state and a deterioration of the oxygenation index by 33%. The RM was then repeated in both groups. Pulmonary artery pressure increased during lipopolysaccharide infusion from 17 ± 2 mmHg (mean ± SD) to 31 ± 10 mmHg and remained unchanged in controls (P < 0.05). During endotoxemia, RM decreased aortic pulse pressure from 37 ± 14 mmHg to 27 ± 13 mmHg (mean ± SD, P = 0.024). The blood flows of the renal artery, hepatic artery, celiac trunk, superior mesenteric artery, and portal vein decreased to 71% ± 21%, 69% ± 20%, 76% ± 16%, 79% ± 18%, and 81% ± 12%, respectively, of baseline flows before RM (P < 0.05 all). Organ perfusion of kidney cortex, kidney medulla, liver, and jejunal mucosa in group E decreased to 65% ± 19%, 77% ± 13%, 66% ± 26%, and 71% ± 12%, respectively, of baseline flows (P < 0.05 all). The corresponding recovery to at least 90% of baseline regional blood flow and organ perfusion lasted 1 to 5 min. Importantly, the decreases in regional blood flows and organ perfusion and the time to recovery of these flows did not differ from the controls. In conclusion, lipopolysaccharide-induced pulmonary arterial hypertension does not aggravate the RM-induced significant but short-lasting decreases in systemic, regional, and organ blood flows.
Resumo:
Purpose: Many methods exist in the literature for identifying PEEP to set in ARDS patients following a lung recruitment maneuver (RM). We compared ten published parameters for setting PEEP following a RM. Methods: Lung injury was induced by bilateral lung lavage in 14 female Dorset sheep, yielding a PaO(2) 100-150 mmHg at F(I)O(2) 1.0 and PEEP 5 cmH(2)O. A quasi-static P-V curve was then performed using the supersyringe method; PEEP was set to 20 cmH(2)O and a RM performed with pressure control ventilation (inspiratory pressure set to 40-50 cmH(2)O), until PaO(2) + PaCO(2) > 400 mmHg. Following the RM, a decremental PEEP trial was performed. The PEEP was decreased in 1 cmH(2)O steps every 5 min until 15 cmH(2)O was reached. Parameters measured during the decremental PEEP trial were compared with parameters obtained from the P-V curve. Results: For setting PEEP, maximum dynamic tidal respiratory compliance, maximum PaO(2), maximum PaO(2) + PaCO(2), and minimum shunt calculated during the decremental PEEP trial, and the lower Pflex and point of maximal compliance increase on the inflation limb of the P-V curve (Pmci,i) were statistically indistinguishable. The PEEP value obtained using the deflation upper Pflex and the point of maximal compliance decrease on the deflation limb were significantly higher, and the true inflection point on the inflation limb and minimum PaCO(2) were significantly lower than the other variables. Conclusion: In this animal model of ARDS, dynamic tidal respiratory compliance, maximum PaO(2), maximum PaO(2) + PaCO(2), minimum shunt, inflation lower Pflex and Pmci,i yield similar values for PEEP following a recruitment maneuver.
Resumo:
Objective: To investigate the effects of low and high levels of positive end-expiratory pressure (PEEP), without recruitment maneuvers, during lung protective ventilation in an experimental model of acute lung injury (ALI). Design: Prospective, randomized, and controlled experimental study. Setting: University research laboratory. Subjects: Wistar rats were randomly assigned to control (C) [saline (0.1 ml), intraperitoneally] and ALI [paraquat (15 mg/kg), intra peritoneally] groups. Measurements and Main Results: After 24 hours, each group was further randomized into four groups (six rats each) at different PEEP levels = 1.5, 3, 4.5, or 6 cm H(2)O and ventilated with a constant tidal volume (6 mL/kg) and open thorax. Lung mechanics [static elastance (Est, L) and viscoelastic pressure (Delta P2, L)] and arterial blood gases were measured before (Pre) and at the end of 1-hour mechanical ventilation (Post). Pulmonary histology (light and electron microscopy) and type III procollagen (PCIII) messenger RNA (mRNA) expression were measured after 1 hour of mechanical ventilation. In ALI group, low and high PEEP levels induced a greater percentage of increase in Est, L (44% and 50%) and Delta P2, L (56% and 36%) in Post values related to Pre. Low PEEP yielded alveolar collapse whereas high PEEP caused overdistension and atelectasis, with both levels worsening oxygenation and increasing PCIII mRNA expression. Conclusions: In the present nonrecruited ALI model, protective mechanical ventilation with lower and higher PEEP levels than required for better oxygenation increased Est, L and Delta P2, L, the amount of atelectasis, and PCIII mRNA expression. PEEP selection titrated for a minimum elastance and maximum oxygenation may prevent lung injury while deviation from these settings may be harmful. (Crit Care Med 2009; 37:1011-1017)
Resumo:
Background Changes in the shape of the capnogram may reflect changes in lung physiology. We studied the effect of different ventilation/perfusion ratios (V/Q) induced by positive end-expiratory pressures (PEEP) and lung recruitment on phase III slope (S(III)) of volumetric capnograms. Methods Seven lung-lavaged pigs received volume control ventilation at tidal volumes of 6 ml/kg. After a lung recruitment maneuver, open-lung PEEP (OL-PEEP) was defined at 2 cmH(2)O above the PEEP at the onset of lung collapse as identified by the maximum respiratory compliance during a decremental PEEP trial. Thereafter, six distinct PEEP levels either at OL-PEEP, 4 cmH(2)O above or below this level were applied in a random order, either with or without a prior lung recruitment maneuver. Ventilation-perfusion distribution (using multiple inert gas elimination technique), hemodynamics, blood gases and volumetric capnography data were recorded at the end of each condition (minute 40). Results S(III) showed the lowest value whenever lung recruitment and OL-PEEP were jointly applied and was associated with the lowest dispersion of ventilation and perfusion (Disp(R-E)), the lowest ratio of alveolar dead space to alveolar tidal volume (VD(alv)/VT(alv)) and the lowest difference between arterial and end-tidal pCO(2) (Pa-ETCO(2)). Spearman`s rank correlations between S(III) and Disp(R-E) showed a =0.85 with 95% CI for (Fisher`s Z-transformation) of 0.74-0.91, P < 0.0001. Conclusion In this experimental model of lung injury, changes in the phase III slope of the capnograms were directly correlated with the degree of ventilation/perfusion dispersion.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)