999 resultados para REACTION-COORDINATE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cr ystal structure of the compound 2-benzoylethylidene-3-(2,4- dibromophenyl)-2,3-dihydro-5-phenyl-l,3,4-thiadiazole* C23H16Br2NZOS (BRMEO) has been determined by using three dimensiona l x-ray diffraction data. The crys tal form is monoclinic, space group P21/c, a = 17.492(4), o -.t' 0 R 0 b =: 16.979(1), c = 14.962(1) A, "X. =o= 90 ',= 106.46(1) , z = 8, graphite-monochromatized Mo~ rad iation, Jl= 0.710J3~, D = 1.62g/cc and o D = 1.65g/cc. The data were col lected on ~ Nonius CAD-4 c diffractometer. The following atoms were made anisotropic: Br, S, N, 0, C7, and C14-C16 for each i ndependent molecu le ; the rest were left isotropic. For 3112 independent refl ec tions with F > 6G\F), R == 0.057. The compound has two independent molecules within the asymmetric unit. Two different conformers were observed which pack well together. /l The S---O interaction distances of 2.493(6) and 2 . 478(7) A were observed for molecules A and B respectively. These values are consistent with earlier findings for 2-benzoylmethylene-3-(2,4-dibromophenyl)- ~~ 2,3-dihydro-5-phenyl-l,3,4-thiadiazole C22H14Br2N20S (BRPHO) and 2-benzoylpropylidene-3-(2,4-dibromophenyl)-2,3-dihydroiii ,'r 5-phenyl-l,3,4-thiadiazole C24H18Br2N20S (BRPETO ) where S---O distances are l ess than the van der Waals (3.251\) but greater than those expected for () a single bond (1.50A). From the results and the literature it appears obvious that the energy/reaction coordinate pathway has a minimum between the end structures (the mono- and bicyclic compounds). * See reference (21) for nomenclature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the usefulness of the generator coordinate method (GCM) for treating the dynamics of a reaction coordinate coupled to a bath of harmonic degrees of freedom. Models for the unimolecular dissociation and isomerization process (proton transfer) are analyzed. The GCM results, presented in analytical form, provide a very good description and are compared to other methods Like the basis set method and multiconfiguration time dependent self-consistent field. (C) 1998 American Institute of Physics. [S0021-9606(98)50934-8].

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Evaluating free energy profiles of chemical reactions in complex environments such as solvents and enzymes requires extensive sampling, which is usually performed by potential of mean force (PMF) techniques. The reliability of the sampling depends not only on the applied PMF method but also the reaction coordinate space within the dynamics is biased. In contrast to simple geometrical collective variables that depend only on the positions of the atomic coordinates of the reactants, the E(gap) reaction coordinate (the energy difference obtained by evaluating a suitable force field using reactant and product state topologies) has the unique property that it is able to take environmental effects into account leading to better convergence, a more faithful description of the transition state ensemble and therefore more accurate free energy profiles. However, E(gap) requires predefined topologies and is therefore inapplicable for multistate reactions, in which the barrier between the chemically equivalent topologies is comparable to the reaction activation barrier, because undesired "side reactions" occur. In this article, we introduce a new energy-based collective variable by generalizing the E(gap) reaction coordinate such that it becomes invariant to equivalent topologies and show that it yields more well behaved free energy profiles than simpler geometrical reaction coordinates.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The reaction mechanism of CO and Fe2O3 in a chemical-looping combustion (CLC) was studied based on density functional theory (DFT) at B3LYP level in this paper. The structures of all reactants, intermediate, transition structures and products of this reaction had been optimized and characterized. The reaction path was validated by means of the intrinsic reaction coordinate (IRC) approach. The result showed that the reaction was divided into two steps, the adsorbed CO molecule on Fe 2O3 surface formed a medium state with one broken Fe-O bond in step1, and in step2, O atom broken here oxidized a subsequent CO molecule in the fuel reactor. Thus, Fe2O3 molecule transport O from air to oxide CO continually in the CLC process. The activation energy and rate coefficients of the two steps were also obtained.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The complex reaction between VO2+ ((1)A(1)/(3)A) and C2H4 (Ag-1(g)/(3)A(1)) to yield VO+ ((1)Delta/(3)Sigma) and CH3CHO ('A'/(3)A) has been studied by means of B3LYP/6-31G* and B3LYP/6-311G(2d,p) calculations. The structures of all reactants, products, intermediates, and transition structures of this reaction have been optimized and characterized at the fundamental singlet and first excited triplet electronic states. Crossing points are localized, and possible spin inversion processes are discussed by means of the intrinsic reaction coordinate approach. Relevant stationary points along the most favorable reaction pathways have been studied at the CCSD/6-311G(2d,p)//B3LYP/6-311G(2d,p) calculation level. The theoretical results allow the development of thermodynamic and kinetic arguments about the reaction pathways of the title process. In the singlet state, the first step is the barrierless obtention of a reactant complex associated with the formation of a V-C bond, while in the triplet state a three-membered ring addition complex with the V bonded to the two C atoms is obtained. Similar behavior is found in the exit channels: the product complexes can be formed from isolated products without barriers. The reactant and product complexes are the most stable stationary points in the singlet and triplet electronic states. From the singlet state reactant complex, two reaction pathways are posssible to reach the triplet state product complex. (i) A mechanism in which a hydrogen transfer process is the first and rate limiting step and the second step is an oxygen transfer between vanadium and carbon atoms with a concomitant change in the spin state. The crossing point between singlet and triplet spin states is not kinetically relevant because it takes place at a later stage occurring in the exit channel. (ii) A mechanism in which the first stage renders a four-membered ring between vanadyl cation and the ethylene fragment and an oxygencarbon bond is formed; on going from this minimum to the second transition structure, associated with a carbon-vanadium bond breaking process, the crossing point between singlet and triplet spin states is reached. The final step is the hydrogen transfer between both carbon atoms to yield the product complex. In this case the spin change opens a lower barrier pathway. The transition structures with larger values of relative energies for both reactive channels of VO2+ ((1)A(1)) + C2H4 (Ag-1) --> VO+ ((3)Sigma) + CH3CHO ((1)A') present similar energies, and the two reaction pathways can be considered as competitive.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We examine the effect of subdividing the potential barrier along the reaction coordinate on Kramers' escape rate for a model potential. Using the known supersymmetric potential approach, we show the existence of an optimal number of subdivisions that maximizes the rate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Enzyme is a dynamic entity with diverse time scales, ranging from picoseconds to seconds or even longer. Here we develop a rate theory for enzyme catalysis that includes conformational dynamics as cycling on a two-dimensional (2D) reaction free energy surface involving an intrinsic reaction coordinate (X) and an enzyme conformational coordinate (Q). The validity of Michaelis-Menten (MM) equation, i.e., substrate concentration dependence of enzymatic velocity, is examined under a nonequilibrium steady state. Under certain conditions, the classic MM equation holds but with generalized microscopic interpretations of kinetic parameters. However, under other conditions, our rate theory predicts either positive (sigmoidal-like) or negative (biphasic-like) kinetic cooperativity due to the modified effective 2D reaction pathway on X-Q surface, which can explain non-MM dependence previously observed on many monomeric enzymes that involve slow or hysteretic conformational transitions. Furthermore, we find that a slow conformational relaxation during product release could retain the enzyme in a favorable configuration, such that enzymatic turnover is dynamically accelerated at high substrate concentrations. The effect of such conformation retainment in a nonequilibrium steady state is evaluated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Barrierless chemical reactions have often been modeled as a Brownian motion on a one-dimensional harmonic potential energy surface with a position-dependent reaction sink or window located near the minimum of the surface. This simple (but highly successful) description leads to a nonexponential survival probability only at small to intermediate times but exponential decay in the long-time limit. However, in several reactive events involving proteins and glasses, the reactions are found to exhibit a strongly nonexponential (power law) decay kinetics even in the long time. In order to address such reactions, here, we introduce a model of barrierless chemical reaction where the motion along the reaction coordinate sustains dispersive diffusion. A complete analytical solution of the model can be obtained only in the frequency domain, but an asymptotic solution is obtained in the limit of long time. In this case, the asymptotic long-time decay of the survival probability is a power law of the Mittag−Leffler functional form. When the barrier height is increased, the decay of the survival probability still remains nonexponential, in contrast to the ordinary Brownian motion case where the rate is given by the Smoluchowski limit of the well-known Kramers' expression. Interestingly, the reaction under dispersive diffusion is shown to exhibit strong dependence on the initial state of the system, thus predicting a strong dependence on the excitation wavelength for photoisomerization reactions in a dispersive medium. The theory also predicts a fractional viscosity dependence of the rate, which is often observed in the reactions occurring in complex environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent picosecond and subpicosecond laser spectroscopy experiments have revealed several chemically and biologically important reactions in solution in which the reaction potential surface does not present a barrier to the motion along the reaction coordinate.The dynamics of these reactions display diverse and interesting behavior. They include the dependence of relaxation rate on the solvent viscosity, the solvent polarity, the temperature, and the wavelength of the exciting light. In this article we review the recent developments in the theoretical description of activationless processes in solution and compare them with the available experimental results

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The principle of the conservation of bond orders during radical-exchange reactions is examined using Mayer's definition of bond orders. This simple intuitive approximation is not valid in a quantitative sense. Ab initio results reveal that free valences (or spin densities) develop on the migrating atom during reactions. For several examples of hydrogen-transfer reactions, the sum of the reaction coordinate bond orders in the transition state was found to be 0.92 +/- 0.04 instead of the theoretical 1.00 because free valences (or spin densities) develop on the migrating atom during reactions. It is shown that free valence is almost equal to the square of the spin density on the migrating hydrogen atom and the maxima in the free valence (or spin density) profiles coincide (or nearly coincide) with the saddle points in the corresponding energy profiles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The catalytic conversion ATP + AMP -> 2ADP by the enzyme adenylate kinase (ADK) involves the binding of one ATP. molecule to the LID domain and one AMP molecule to the NMP domain. The latter is followed by a. phosphate transfer and then the release of two ADP molecules. We have computed a novel two-dimensional configurational free energy surface (2DCFES), with one reaction coordinate each for the LID and the NMP domain motions, while considering explicit water interactions. Our computed 2DCFES clearly reveals the existence of a stable half-open half-closed (HOHC) intermediate stale of the enzyme. Cycling of the enzyme through the HOHC state reduces the conformational free energy barrier for. the reaction by about 20 kJ/mol. We find that the stability of the HOHC state (missed in all earlier studies with implicit solvent model) is largely because of the increase of specific interactions of the polar amino acid side chains with water, particularly with the arginine and the histidine residues. Free energy surface of the LID domain is rather rugged, which can conveniently slow down LID's conformational motion, thus facilitating a new substrate capture after the product release in the catalytic cycle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider the effect of subdividing the potential barrier along the reaction coordinate on Kramer's escape rate for a model potential, Using the known supersymmetric potential approach, we show the existence of an optimal number of subdivisions that maximizes the rate, We cast the problem as a mean first passage time problem of a biased random walker and obtain equivalent results, We briefly summarize the results of our investigation on the increase in the escape rate by placing a blow-torch in the unstable part of one of the potential wells. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Free energy barriers separating interfacial water molecules from the hydration layer at the surface of a protein to the bulk are obtained by using the umbrella sampling method of free energy calculation. We consider hydration layer of chicken villin head piece (HP-36) which has been studied extensively by molecular dynamics simulations. The free energy calculations reveal a strong sensitivity to the secondary structure. In particular, we find a region near the junction of first and second helix that contains a cluster of water molecules which are slow in motion, characterized by long residence times (of the order of 100 ps or more) and separated by a large free energy barrier from the bulk water. However, these ``slow'' water molecules constitute only about 5-10% of the total number of hydration layer water molecules. Nevertheless, they play an important role in stabilizing the protein conformation. Water molecules near the third helix (which is the important helix for biological function) are enthalpically least stable and exhibit the fastest dynamics. Interestingly, barrier height distributions of interfacial water are quite broad for water surrounding all the three helices (and the three coils), with the smallest barriers found for those near the helix-3. For the quasi-bound water molecules near the first and second helices, we use well-known Kramers' theory to estimate the residence time from the free energy surface, by estimating the friction along the reaction coordinate from the diffusion coefficient by using Einstein relation. The agreement found is satisfactory. We discuss the possible biological function of these slow, quasi-bound (but transient) water molecules on the surface.