17 resultados para RCPSP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

El problema d'operacions (scheduling) és un procés de presa de decisions quejuga un paper molt important en organitzacions de manufactura i serveis, jaque té una aplicació a la producció, transport i distribució, i a la comunicaciói processament d'informació, entre d'altres. Consisteix en assignar d'unamanera apropiada els recursos disponibles per al processament de tasquesde manera que es puguin optimitzar els objectius de l’organització.Com cas particular de la programació d'operacions, hi ha la programacióde projectes (Project Scheduling), que és el procés de planificar, organitzari controlar activitats i recursos per aconseguir un objectiu concret, generalmentamb limitacions de temps, recursos o costos. Dins aquest grup essituen els problemes de programació de projectes (PSP), que és un nomgenèric que es dóna a tota una classe de problemes en els quals és necessàriala programació de manera òptima el temps, el cost i els recursos dels projectes.La finalitat d'aquest projecte és crear una plataforma RCPSP que puguillegir diferents formats d'entrada (fitxers del tipus :.rcp,.sch,.sm,.data,.pat),pre-processar-los, codificar-los a través de diferents modelitzacions (TaskRD,TimeRD...) per tal de poder-los passar a instàncies SMT i poder executar-losa través de la API de Yices. L'objectiu és trobar el temps d'inici percada activitat de manera que es minimitzi la longitud del makespan senseque es violin les restriccions.Cal dissenyar una aplicació en C++, que sigui escalable i que puguiaconseguir el resultat del problema en el temps més òptim possible

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Solver Add-in of Microsoft Excel is widely used in courses on Operations Research and in industrial applications. Since the 2010 version of Microsoft Excel, the Solver Add-in comprises a so-called evolutionary solver. We analyze how this metaheuristic can be applied to the resource-constrained project scheduling problem (RCPSP). We present an implementation of a schedule-generation scheme in a spreadsheet, which combined with the evolutionary solver can be used for devising good feasible schedules. Our computational results indicate that using this approach, non-trivial instances of the RCPSP can be (approximately) solved to optimality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Engenharia Electrotécnica e de Computadores. Área de Especialização em Sistemas e Planeamento Industrial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A construction project is a group of discernible tasks or activities that are conduct-ed in a coordinated effort to accomplish one or more objectives. Construction projects re-quire varying levels of cost, time and other resources. To plan and schedule a construction project, activities must be defined sufficiently. The level of detail determines the number of activities contained within the project plan and schedule. So, finding feasible schedules which efficiently use scarce resources is a challenging task within project management. In this context, the well-known Resource Constrained Project Scheduling Problem (RCPSP) has been studied during the last decades. In the RCPSP the activities of a project have to be scheduled such that the makespan of the project is minimized. So, the technological precedence constraints have to be observed as well as limitations of the renewable resources required to accomplish the activities. Once started, an activity may not be interrupted. This problem has been extended to a more realistic model, the multi-mode resource con-strained project scheduling problem (MRCPSP), where each activity can be performed in one out of several modes. Each mode of an activity represents an alternative way of combining different levels of resource requirements with a related duration. Each renewable resource has a limited availability for the entire project such as manpower and machines. This paper presents a hybrid genetic algorithm for the multi-mode resource-constrained pro-ject scheduling problem, in which multiple execution modes are available for each of the ac-tivities of the project. The objective function is the minimization of the construction project completion time. To solve the problem, is applied a two-level genetic algorithm, which makes use of two separate levels and extend the parameterized schedule generation scheme. It is evaluated the quality of the schedules and presents detailed comparative computational re-sults for the MRCPSP, which reveal that this approach is a competitive algorithm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The resource constrained project scheduling problem (RCPSP) is a difficult problem in combinatorial optimization for which extensive investigation has been devoted to the development of efficient algorithms. During the last couple of years many heuristic procedures have been developed for this problem, but still these procedures often fail in finding near-optimal solutions. This paper proposes a genetic algorithm for the resource constrained project scheduling problem. The chromosome representation of the problem is based on random keys. The schedule is constructed using a heuristic priority rule in which the priorities and delay times of the activities are defined by the genetic algorithm. The approach was tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

- The resource constrained project scheduling problem (RCPSP) is a difficult problem in combinatorial optimization for which extensive investigation has been devoted to the development of efficient algorithms. During the last couple of years many heuristic procedures have been developed for this problem, but still these procedures often fail in finding near-optimal solutions. This paper proposes a genetic algorithm for the resource constrained project scheduling problem. The chromosome representation of the problem is based on random keys. The schedule is constructed using a heuristic priority rule in which the priorities and delay times of the activities are defined by the genetic algorithm. The approach was tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a genetic algorithm for the multimode resource-constrained project scheduling problem (MRCPSP), in which multiple execution modes are available for each of the activities of the project. The objective function is the minimization of the construction project completion time. To solve the problem, is applied a two-level genetic algorithm, which makes use of two separate levels and extend the parameterized schedule generation scheme by introducing an improvement procedure. It is evaluated the quality of the schedule and present detailed comparative computational results for the MRCPSP, which reveal that this approach is a competitive algorithm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este artigo apresenta uma nova abordagem (MM-GAV-FBI), aplicável ao problema da programação de projectos com restrições de recursos e vários modos de execução por actividade, problema conhecido na literatura anglo-saxónica por MRCPSP. Cada projecto tem um conjunto de actividades com precedências tecnológicas definidas e um conjunto de recursos limitados, sendo que cada actividade pode ter mais do que um modo de realização. A programação dos projectos é realizada com recurso a um esquema de geração de planos (do inglês Schedule Generation Scheme - SGS) integrado com uma metaheurística. A metaheurística é baseada no paradigma dos algoritmos genéticos. As prioridades das actividades são obtidas a partir de um algoritmo genético. A representação cromossómica utilizada baseia-se em chaves aleatórias. O SGS gera planos não-atrasados. Após a obtenção de uma solução é aplicada uma melhoria local. O objectivo da abordagem é encontrar o melhor plano (planning), ou seja, o plano que tenha a menor duração temporal possível, satisfazendo as precedências das actividades e as restrições de recursos. A abordagem proposta é testada num conjunto de problemas retirados da literatura da especialidade e os resultados computacionais são comparados com outras abordagens. Os resultados computacionais validam o bom desempenho da abordagem, não apenas em termos de qualidade da solução, mas também em termos de tempo útil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a genetic algorithm for the Resource Constrained Project Scheduling Problem (RCPSP). The chromosome representation of the problem is based on random keys. The schedule is constructed using a heuristic priority rule in which the priorities of the activities are defined by the genetic algorithm. The heuristic generates parameterized active schedules. The approach was tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Project Management involves onetime endeavors that demand for getting it right the first time. On the other hand, project scheduling, being one of the most modeled project management process stages, still faces a wide gap from theory to practice. Demanding computational models and their consequent call for simplification, divert the implementation of such models in project management tools from the actual day to day project management process. Special focus is being made to the robustness of the generated project schedules facing the omnipresence of uncertainty. An "easy" way out is to add, more or less cleverly calculated, time buffers that always result in project duration increase and correspondingly, in cost. A better approach to deal with uncertainty seems to be to explore slack that might be present in a given project schedule, a fortiori when a non-optimal schedule is used. The combination of such approach to recent advances in modeling resource allocation and scheduling techniques to cope with the increasing flexibility in resources, as can be expressed in "Flexible Resource Constraint Project Scheduling Problem" (FRCPSP) formulations, should be a promising line of research to generate more adequate project management tools. In reality, this approach has been frequently used, by project managers in an ad-hoc way.