6 resultados para RAUISUCHIAN ARCHOSAURS
Resumo:
For more than 30 million years, in early Mesozoic Pangea, ""rauisuchian"" archosaurs were the apex predators in most terrestrial ecosystems, but their biology and evolutionary history remain poorly understood. We describe a new ""rauisuchian"" based on ten individuals found in a single locality from the Middle Triassic (Ladinian) Santa Maria Formation of southern Brazil. Nine articulated and associated skeletons were discovered, three of which have nearly complete skulls. Along with sedimentological and taphonomic data, this suggests that those highly successful predators exhibited some kind of intraspecific interaction. Other monotaxic assemblages of Triassic archosaurs are Late Triassic (Norian-Rhaetian) in age, approximately 10 million years younger than the material described here. Indeed, the studied assemblage may represent the earliest evidence of gregariousness among archosaurs, adding to our knowledge on the origin of a behavior pattern typical of extant taxa.
Resumo:
Crown group Archosauria, which includes birds, dinosaurs, crocodylomorphs, and several extinct Mesozoic groups, is a primary division of the vertebrate tree of life. However, the higher-level phylogenetic relationships within Archosauria are poorly resolved and controversial, despite years of study. The phylogeny of crocodile-line archosaurs (Crurotarsi) is particularly contentious, and has been plagued by problematic taxon and character sampling. Recent discoveries and renewed focus on archosaur anatomy enable the compilation of a new dataset, which assimilates and standardizes character data pertinent to higher-level archosaur phylogeny, and is scored across the largest group of taxa yet analysed. This dataset includes 47 new characters (25% of total) and eight taxa that have yet to be included in an analysis, and total taxonomic sampling is more than twice that of any previous study. This analysis produces a well-resolved phylogeny, which recovers mostly traditional relationships within Avemetatarsalia, places Phytosauria as a basal crurotarsan clade, finds a close relationship between Aetosauria and Crocodylomorpha, and recovers a monophyletic Rauisuchia comprised of two major subclades. Support values are low, suggesting rampant homoplasy and missing data within Archosauria, but the phylogeny is highly congruent with stratigraphy. Comparison with alternative analyses identifies numerous scoring differences, but indicates that character sampling is the main source of incongruence. The phylogeny implies major missing lineages in the Early Triassic and may support a Carnian-Norian extinction event.
Resumo:
Crocodylomorph eggs are relatively poorly known in the fossil record when compared with skeletal remains, which are found all over the world, or when compared with dinosaur eggs. Herein are described crocodiloid eggshells from the Upper Jurassic Lourinhã Formation of Portugal, recovered from five sites: Cambelas (clutch), Casal da Rola, Peralta (eggshell fragments), and Paimogo North and South (three partial crushed eggs and eggshell fragments). The clutch of Cambelas, composed of 13 eggs, is the only sample not found in association with dinosaur eggshells. Morphological characters of the eggshells described herein, such as shell units and microstructure, are consistent with the crocodiloid morphotype. As such, this material is assigned to the oofamily Krokolithidae, making them the oldest known crocodylomorph eggs so far and the best record for eggs of non-crocodylian crocodylomorphs. Two new ootaxa are erected, Suchoolithus portucalensis oogen. et oosp. nov, for the clutch of Cambelas, and Krokolithes dinophilus, oosp. nov., for the remaining eggshells. The basic structure of crocodilian eggshells has remained stable since at least the Late Jurassic. Additionally, the findings suggest previously unknown biological associations with contemporary archosaurs, shedding light on the poorly understood egg morphology, reproduction strategies and paleobiology of crocodylomorphs during the Late Jurassic.
Resumo:
Physiological, anatomical, and developmental features of the crocodilian heart support the paleontological evidence that the ancestors of living crocodilians were active and endothermic, but the lineage reverted to ectothermy when it invaded the aquatic, ambush predator niche. In endotherms, there is a functional nexus between high metabolic rates, high blood flow rates, and complete separation of high systemic blood pressure from low pulmonary blood pressure in a four-chambered heart. Ectotherms generally lack all of these characteristics, but crocodilians retain a four-chambered heart. However, crocodilians have a neurally controlled, pulmonary bypass shunt that is functional in diving. Shunting occurs outside of the heart and involves the left aortic arch that originates from the right ventricle, the foramen of Panizza between the left and right aortic arches, and the cog-tooth valve at the base of the pulmonary artery. Developmental studies show that all of these uniquely crocodilian features are secondarily derived, indicating a shift from the complete separation of blood flow of endotherms to the controlled shunting of ectotherms. We present other evidence for endothermy in stem archosaurs and suggest that some dinosaurs may have inherited the trait.
Resumo:
From the record of dinosaurian skeletal remains it has been inferred that the origin and initial diversification of dinosaurs were rapid events, occupying an interval of about 5 million years in the Late Triassic. By contrast numerous reports of dinosauroid tracks imply that the emergence of dinosaurs was a more protracted affair extending through much of the Early and Middle Triassic. This study finds no convincing evidence of dinosaur tracks before the late Ladinian. Each of the three dinosaurian clades - Theropoda, Sauropodomorpha, Ornithischia - produced a unique track morphotype that appears to be an independent modification of the chirotherioid pattern attributed to stem-group archosaurs (thecodontian reptiles). The existence of three divergent track morphotypes is consistent with the concept of dinosaurian polyphyly but can be reconciled with the hypothesis of dinosaurian monophyly only by invoking many and rapid reversals in the locomotor anatomy of early dinosaurs. The origin of dinosaurs was not the correlate or consequence of any single event or process, be it global change, competitive replacement, or opportunism in the wake of mass extinction. Instead the origin of dinosaurs is envisaged as a series of three cladogenetic events over an interval of at least 10 million years and possibly as much as 25 million years. This scenario of dinosaurian polyphyly is as well-supported by fossil evidence as is the currently favoured view of dinosaurian monophyly.