962 resultados para RANGE SIZE
Resumo:
What causes species richness to vary among different groups of organisms? Two hypotheses are that large geographical ranges and fast life history either reduce extinction rates or raise speciation rates, elevating a clade's rate of diversification. Here we present a comparative analysis of these hypotheses using data on the phylogenetic relationships, geographical ranges and life history of the terrestrial mammal fauna of Australia. By comparing species richness patterns to null models, we show that species are distributed nonrandomly among genera. Using sister-clade comparisons to control for clade age, we then find that faster diversification is significantly associated with larger geographical ranges and larger litters, but there is no evidence for an effect of body size or age at first breeding on diversification rates. We believe the most likely explanation for these patterns is that larger litters and geographical ranges increase diversification rates because they buffer species from extinction. We also discuss the possibility that positive effects of litter size and range size on diversification rates result from elevated speciation rates.
Resumo:
Aim Identifying climatic niche shifts and their drivers is important to accurately predict the risk of biological invasions. The niches of non-native plants and birds have recently been assessed in large-scale multi-species studies, but such large-scale tests are lacking for non-native reptiles and amphibians (herpetofauna). Furthermore, little is known about the factors contributing to niche shifts when they occur. Based on the occurrence of 71 reptile and amphibian species, we compared native and non-native realized niches in 101 invaded ranges at a worldwide scale and identified the factors that affect niche shifts. Location The world except the Antarctic. Methods We assessed climatic niche dynamics in a gridded environmental space allowing the quantification of niche overlap and expansion into climatic conditions not colonized by the species in their native range. We analyzed the factors affecting niche shifts using a model averaging approach based on generalized linear mixed-effects models. Results Approximately 57% of the invaded ranges (51% for amphibians and 61% for reptiles) showed niche shifts (≥10% expansion in the realized climatic niche). Island endemics, species introduced to Oceania and invaded ranges outside the native biogeographic realm showed a higher proportion of niche shifts. Niche shifts were more likely for species that had smaller native range sizes, were introduced earlier into a new range or invaded areas located at lower latitudes than the native range. Main conclusions The proportion of niche shifts for non-native herpetofauna was higher than those for Holarctic non-native plants and European non-native birds. The 'climate matching hypothesis' should be used with caution for species shifting their niche because it could underestimate the risk of their establishment.
Resumo:
Extinction risk has not been evaluated for 96% of all described plant species. Given that the Global Strategy for Plant Conservation proposes preliminary conservation assessments of all described plant species by 2010, herbarium specimens (i.e., primary occurrence data) are increasingly being used to infer threat components from estimates of geographic range size. Nevertheless, estimates of range size based on herbarium data may be inaccurate due to collection bias associated with interspecific variation in detectability. We used data on 377 species of Bignonieae to test the hypothesis that there is a positive relationship between detectability and estimates of geographic range size derived from herbarium specimens. This relationship is expected if the proportion of the true geographic range size of a species that is documented by herbarium specimens is given by the product of the true geographic range size and the detectability of the species, assuming no relationship between true geographic range size and detectability. We developed 4 measures of detectability that can be estimated from herbarium data and examined the relationship between detectability and 2 types of estimates of geographic range size: area of occupancy and extent of occurrence. Our results from regressing estimates of extent of occurrence and area of occupancy on detectability across genera provided no support for this hypothesis. The same was true for regressions of estimated extent of occurrence on detectability across species within genera. Nevertheless, regressions of estimated area of occupancy on detectability across species within genera provided partial support for our hypothesis. We considered 3 possible explanations for this mixed outcome: violation of the assumption of no relationship between true geographic range size and detectability; the relationships between estimated geographic range size and detectability may be an artifact of a negative relationship between estimated area of occupancy and the sampling variance of detectability; detectability may have had 2 opposite effects on estimated species range sizes: one determines the proportion of the true range of a species documented by herbarium specimens and the other determines the distribution of true range size for the species actually observed with herbarium data. Our findings should help improve understanding of the potential biases incurred with the use of herbarium data.
Resumo:
Aim Habitat loss and climate change are two major drivers of biological diversity. Here we quantify how deforestation has already changed, and how future climate scenarios may change, environmental conditions within the highly disturbed Atlantic forests of Brazil. We also examine how environmental conditions have been altered within the range of selected bird species. Location Atlantic forests of south-eastern Brazil. Methods The historical distribution of 21 bird species was estimated using Maxent. After superimposing the present-day forest cover, we examined the environmental niches hypothesized to be occupied by these birds pre- and post-deforestation using environmental niche factor analysis (ENFA). ENFA was also used to compare conditions in the entire Atlantic forest ecosystem pre- and post-deforestation. The relative influence of land use and climate change on environmental conditions was examined using analysis of similarity and principal components analysis. Results Deforestation in the region has resulted in a decrease in suitable habitat of between 78% and 93% for the Atlantic forest birds included here. Further, Atlantic forest birds today experience generally wetter and less seasonal forest environments than they did historically. Models of future environmental conditions within forest remnants suggest generally warmer conditions and lower annual variation in rainfall due to greater precipitation in the driest quarter of the year. We found that deforestation resulted in a greater divergence of environmental conditions within Atlantic forests than that predicted by climate change. Main conclusions The changes in environmental conditions that have occurred with large-scale deforestation suggest that selective regimes may have shifted and, as a consequence, spatial patterns of intra-specific variation in morphology, behaviour and genes have probably been altered. Although the observed shifts in available environmental conditions resulting from deforestation are greater than those predicted by climate change, the latter will result in novel environments that exceed temperatures in any present-day climates and may lead to biotic attrition unless organisms can adapt to these warmer conditions. Conserving intra-specific diversity over the long term will require considering both how changes in the recent past have influenced contemporary populations and the impact of future environmental change.
Resumo:
A common approach used to estimate landscape resistance involves comparing correlations of ecological and genetic distances calculated among individuals of a species. However, the location of sampled individuals may contain some degree of spatial uncertainty due to the natural variation of animals moving through their home range or measurement error in plant or animal locations. In this study, we evaluate the ways that spatial uncertainty, landscape characteristics, and genetic stochasticity interact to influence the strength and variability of conclusions about landscape-genetics relationships. We used a neutral landscape model to generate 45 landscapes composed of habitat and non-habitat, varying in percent habitat, aggregation, and structural connectivity (patch cohesion). We created true and alternate locations for 500 individuals, calculated ecological distances (least-cost paths), and simulated genetic distances among individuals. We compared correlations between ecological distances for true and alternate locations. We then simulated genotypes at 15 neutral loci and investigated whether the same influences could be detected in simple Mantel tests and while controlling for the effects of isolation-by distance using the partial Mantel test. Spatial uncertainty interacted with the percentage of habitat in the landscape, but led to only small reductions in correlations. Furthermore, the strongest correlations occurred with low percent habitat, high aggregation, and low to intermediate levels of cohesion. Overall genetic stochasticity was relatively low and was influenced by landscape characteristics.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Macroecology evaluates the partitioning of physical space and resources among organisms through correlation among ecological variables, such as geographical range size and shape, body size, and population density, measured at large geographical and taxonomic scales. In this article, we analyzed the spatial patterns in worker body size and geographic range size for the 27 described species of honey ants, genus Myrmecocystus Wesmael, in the United States and Mexico, and especially the relationship between these 2 variables after statistically removing their spatial patterns. The 2 variables are correlated, but also displayed significant spatial patterns, as detected by trend surface and spatial autocorrelation analyses. After removing these spatial effects, worker body size and geographic range size were still positively correlated. The relationship, therefore, is not a consequence of spatial effects and it does follow Brown's model, which predicts that the geographic range size will have a positive slope on body size. In this model, the lower population densities caused by foraging activities and local territorial competition are associated with a large geographic range, avoiding stochastic extinction. Although this constraint in local population density does not necessarily hold for small organisms such as insects that could achieve high densities even in very small areas and patchy habitats, it may hold for social insects, especially ants, because of the local competition among colonies.
Resumo:
Aim Estimates of geographic range size derived from natural history museum specimens are probably biased for many species. We aim to determine how bias in these estimates relates to range size. Location We conducted computer simulations based on herbarium specimen records from localities ranging from the southern United States to northern Argentina. Methods We used theory on the sampling distribution of the mean and variance to develop working hypotheses about how range size, defined as area of occupancy (AOO), was related to the inter-specific distribution of: (1) mean collection effort per area across the range of a species (MC); (2) variance in collection effort per area across the range of a species (VC); and (3) proportional bias in AOO estimates (PBias: the difference between the expected value of the estimate of AOO and true AOO, divided by true AOO). We tested predictions from these hypotheses using computer simulations based on a dataset of more than 29,000 herbarium specimen records documenting occurrences of 377 plant species in the tribe Bignonieae (Bignoniaceae). Results The working hypotheses predicted that the mean of the inter-specific distribution of MC, VC and PBias were independent of AOO, but that the respective variance and skewness decreased with increasing AOO. Computer simulations supported all but one prediction: the variance of the inter-specific distribution of VC did not decrease with increasing AOO. Main conclusions Our results suggest that, despite an invariant mean, the dispersion and symmetry of the inter-specific distribution of PBias decreases as AOO increases. As AOO increased, range size was less severely underestimated for a large proportion of simulated species. However, as AOO increased, range size estimates having extremely low bias were less common.
Resumo:
Estimators of home-range size require a large number of observations for estimation and sparse data typical of tropical studies often prohibit the use of such estimators. An alternative may be use of distance metrics as indexes of home range. However, tests of correlation between distance metrics and home-range estimators only exist for North American rodents. We evaluated the suitability of 3 distance metrics (mean distance between successive captures [SD], observed range length [ORL], and mean distance between all capture points [AD]) as indexes for home range for 2 Brazilian Atlantic forest rodents, Akodon montensis (montane grass mouse) and Delomys sublineatus (pallid Atlantic forest rat). Further, we investigated the robustness of distance metrics to low numbers of individuals and captures per individual. We observed a strong correlation between distance metrics and the home-range estimator. None of the metrics was influenced by the number of individuals. ORL presented a strong dependence on the number of captures per individual. Accuracy of SD and AD was not dependent on number of captures per individual, but precision of both metrics was low with numbers of captures below 10. We recommend the use of SD and AD instead of ORL and use of caution in interpretation of results based on trapping data with low captures per individual.
Resumo:
The maned wolf (Chrysocyon brachyurus) is the largest canid in South America, weighing up to 30 kg, and exhibits an omnivorous diet based on fruits and small vertebrates. Maned wolves are considered to live in monogamous pairs defending a common territory, with mates living a largely solitary life, but these conclusions come from few studies with small samples. We captured maned wolves in Emas National Park, central Brazil, and monitored their use of space using radiotelemetry. Home-range size and overlap of 45 adults, and interactions between members of 5 pairs, were investigated. Home-range sizes of resident adults averaged 80.18 km(2) using the fixed kernel with 95% of the locations, and averaged 13.78 km(2) with 50% of the locations. Overlap of 95% ranges between male-male, female-female, or mixed dyads was similar, approximately 0.20, whereas 50% ranges of maned wolves showed less overlap overall but more tolerance for overlap with the opposite sex. Members of a pair were located alone more often than together, and even when located simultaneously maintained a mean distance of >0.5 km apart, independent of time of day. Results are in agreement with a spatial organization based on monogamous mating pairs with little intrapair sociality, but the latter needs to be investigated in more detail.
Resumo:
Nest use, home-range characteristics and nightly movements by the northern bettong (Bettongia tropica) were examined before and after a low- to moderate-intensity fire in sclerophyll woodland in north-eastern Australia using radio-telemetry. In all, 23 animals were radio-tracked at three-month intervals between February 1995 and May 1996. During November 1995 a low- intensity experimental fire burned the entire home range of most animals. The northern bettong appeared fairly catholic in choice of nest site, with a variety of nest locations and nesting materials used. Prior to the fire, nests were generally located in areas of dense cover, such as the skirts of grass trees (46%) or grass close to a log (29%). After fire removed most ground cover in the nesting areas of most animals, bettongs used remaining shelter such as boulder piles (45%), recently fallen trees (8%) and patches of unburnt vegetation (21%). Nest areas (10.1 ha) of males were significantly larger than those of females (5.4 ha). Home ranges of both sexes were large (59 ha) and most ranges lacked distinct core areas, suggesting that bettongs used all parts of their home ranges equally. High mean rates of nightly movement by the northern bettong indicated that large distances were moved within home ranges during nightly foraging. No significant fire-related changes were detected in home-range size, home-range location, nest-area location or mean rates of nightly movement, suggesting that the northern bettong is well adapted to the low- and medium-intensity fires that characterise its habitat.
Resumo:
Why does species richness vary so greatly across lineages? Traditionally, variation in species richness has been attributed to deterministic processes, although it is equally plausible that it may result from purely stochastic processes. We show that, based on the best available phylogenetic hypothesis, the pattern of cladogenesis among agamid lizards is not consistent with a random model, with some lineages having more species, and others fewer species, than expected by chance. We then use phylogenetic comparative methods to test six types of deterministic explanation for variation in species richness: body size, life history, sexual selection, ecological generalism, range size and latitude. Of eight variables we tested, only sexual size dimorphism and sexual dichromatism predicted species richness. Increases in species richness are associated with increases in sexual dichromatism but reductions in sexual size dimorphism. Consistent with recent comparative studies, we find no evidence that species richness is associated with small body size or high fecundity. Equally, we find no evidence that species richness covaries with ecological generalism, latitude or range size.