68 resultados para RADIOSURGERY
Resumo:
Stereotactic radiosurgery (SRS) treatments for brain cancers require small and precisely shaped photon beams. These beams can be generated by fitting a linear accelerator with a micro-multileaf collimator (mMLC) such as the BrainLAB m3, which offers greater flexibility for field shaping than standard SRS cone collimators
Resumo:
Purpose Small field x-ray beam dosimetry is difficult due to a lack of lateral electronic equilibrium, source occlusion, high dose gradients and detector volume averaging. Currently there is no single definitive detector recommended for small field dosimetry. The objective of this work was to evaluate the performance of a new commercial synthetic diamond detector, namely the PTW 60019 microDiamond, for the dosimetry of small x-ray fields as used in stereotactic radiosurgery (SRS). Methods Small field sizes were defined by BrainLAB circular cones (4 – 30 mm diameter) on a Novalis Trilogy linear accelerator and using the 6 MV SRS x-ray beam mode for all measurements. Percentage depth doses were measured and compared to an IBA SFD and a PTW 60012 E diode. Cross profiles were measured and compared to an IBA SFD diode. Field factors, Ω_(Q_clin,Q_msr)^(f_clin,f_msr ), were calculated by Monte Carlo methods using BEAMnrc and correction factors, k_(Q_clin,Q_msr)^(f_clin,f_msr ), were derived for the PTW 60019 microDiamond detector. Results For the small fields of 4 to 30 mm diameter, there were dose differences in the PDDs of up to 1.5% when compared to an IBA SFD and PTW 60012 E diode detector. For the cross profile measurements the penumbra values varied, depending upon the orientation of the detector. The field factors, Ω_(Q_clin,Q_msr)^(f_clin,f_msr ), were calculated for these field diameters at a depth of 1.4 cm in water and they were within 2.7% of published values for a similar linear accelerator. The corrections factors, k_(Q_clin,Q_msr)^(f_clin,f_msr ), were derived for the PTW 60019 microDiamond detector. Conclusions We conclude that the new PTW 60019 microDiamond detector is generally suitable for relative dosimetry in small 6 MV SRS beams for a Novalis Trilogy linear equipped with circular cones.
Resumo:
Purpose
To evaluate the outcome of repeat stereotactic radiosurgery (SRS) for acoustic neuromas, we assessed tumor control, clinical outcomes, and the risk of adverse radiation effects in patients whose tumors progressed after initial management.
Methods and Materials
During a 21-year experience at our center, 1,352 patients underwent SRS as management for their acoustic neuromas. We retrospectively identified 6 patients who underwent SRS twice for the same tumor. The median patient age was 47 years (range, 35–71 years). All patients had imaging evidence of tumor progression despite initial SRS. One patient also had incomplete surgical resection after initial SRS. All patients were deaf at the time of the second SRS. The median radiosurgery target volume at the time of the initial SRS was 0.5 cc and was 2.1 cc at the time of the second SRS. The median margin dose at the time of the initial SRS was 13 Gy and was 11 Gy at the time of the second SRS. The median interval between initial SRS and repeat SRS was 63 months (range, 25–169 months).
Results
At a median follow-up of 29 months after the second SRS (range, 13–71 months), tumor control or regression was achieved in all 6 patients. No patient developed symptomatic adverse radiation effects or new neurological symptoms after the second SRS.
Conclusions
With this limited experience, we found that repeat SRS for a persistently enlarging acoustic neuroma can be performed safely and effectively.
Resumo:
Intracranial metastatic prostate carcinoma is rare. We sought to determine the clinical outcomes after Gamma Knife® stereotactic radiosurgery (GKSRS) for patients with intracranial prostate carcinoma metastases. We studied data from 10 patients who underwent radiosurgery for 15 intracranial metastases (9 dural-based and 6 parenchymal). Six patients had radiosurgery for solitary tumors and four had multiple tumors. The primary pathology was adenocarcinoma (eight patients) and small cell carcinoma (two patients). All patients received multimodality management for their primary tumor (including resection, radiation therapy, androgen deprivation therapy) and eight patients had evidence of systemic disease at time of radiosurgery. The mean tumor volume was 7.7 cm3 (range 1.1-17.2 cm3) and a median margin dose of 16 Gy was administered. Two patients had progressive intracranial disease in spite of fractionated partial brain radiation therapy (PBRT) prior to SRS. A local tumor control rate of 85% was achieved (including patients receiving boost, upfront and salvage SRS). New remote brain metastases developed in three patients (33%) and one patient had repeat SRS for tumor recurrence. The median survival after radiosurgery was 13 months and the 1-year survival rate was 60%. SRS was a well tolerated and effective therapy either alone or as a boost to fractionated radiation therapy in the management of patients with intracranial prostate carcinoma metastases. © 2009 Springer Science+Business Media, LLC.
Resumo:
Abstract Object The aim of this study was to evaluate the outcomes of Gamma Knife surgery (GKS) when used for patients with intractable cluster headache (CH). Methods Four participating centers of the North American Gamma Knife Consortium identified 17 patients who underwent GKS for intractable CH between 1996 and 2008. The median patient age was 47 years (range 26-83 years). The median duration of pain before GKS was 10 years (range 1.3-40 years). Seven patients underwent unsuccessful prior surgical procedures, including microvascular decompression (2 patients), microvascular decompression with glycerol rhizotomy (2 patients), deep brain stimulation (1 patient), trigeminal ganglion stimulation (1 patient), and prior GKS (1 patient). Fourteen patients had associated autonomic symptoms. The radiosurgical target was the trigeminal nerve (TN) root and the sphenopalatine ganglion (SPG) in 8 patients, only the TN in 8 patients, and only the SPG in 1 patient. The median maximum TN and SPG dose was 80 Gy. Results Favorable pain relief (Barrow Neurological Institute Grades I-IIIb) was achieved and maintained in 10 (59%) of 17 patients at a median follow-up of 34 months. Three patients required additional procedures (repeat GKS in 2 patients, hypothalamic deep brain stimulation in 1 patient). Eight (50%) of 16 patients who had their TN irradiated developed facial sensory dysfunction after GKS. Conclusions Gamma Knife surgery for intractable, medically refractory CH provided lasting pain reduction in approximately 60% of patients, but was associated with a significantly greater chance of facial sensory disturbances than GKS used for trigeminal neuralgia.
Resumo:
This study examined the clinical efficacy of Gamma knife stereotactic radiosurgery as a treatment option in the management of pediatric primitive neuroectodermal tumours (PNETs).
Resumo:
Because of their critical location adjacent to brain, cranial nerve, and vascular structures, petroclival meningiomas remain a clinical challenge. As first author, I evaluated outcomes in 168 patients with petroclival meningiomas who underwent Gamma Knife surgery (GKS) during a 21-year interval at the University of Pittsburgh.
Resumo:
Object
Trigeminal neuralgia pain causes severe disability. Stereotactic radiosurgery is the least invasive surgical option for patients with trigeminal neuralgia. Since different medical and surgical options have different rates of pain relief and morbidity, it is important to evaluate longer-term outcomes.
Methods
The authors retrospectively reviewed outcomes in 503 medically refractory patients with trigeminal neuralgia who underwent Gamma Knife surgery (GKS). The median patient age was 72 years (range 26–95 years). Prior surgery had failed in 205 patients (43%). The GKS typically was performed using MR imaging guidance, a single 4-mm isocenter, and a maximum dose of 80 Gy.
Results
Patients were evaluated for up to 16 years after GKS; 107 patients had > 5 years of follow-up. Eighty-nine percent of patients achieved initial pain relief that was adequate or better, with or without medications (Barrow Neurological Institute [BNI] Scores I–IIIb). Significant pain relief (BNI Scores I–IIIa) was achieved in 73% at 1 year, 65% at 2 years, and 41% at 5 years. Including Score IIIb (pain adequately controlled with medication), a BNI score of I–IIIb was found in 80% at 1 year, 71% at 3 years, 46% at 5 years, and 30% at 10 years. A faster initial pain response including adequate and some pain relief was seen in patients with trigeminal neuralgia without additional symptoms, patients without prior surgery, and patients with a pain duration of = 3 years. One hundred ninety-three (43%) of 450 patients who achieved initial pain relief reported some recurrent pain 3–144 months after initial relief (median 50 months). Factors associated with earlier pain recurrence that failed to maintain adequate or some pain relief were trigeminal neuralgia with additional symptoms and = 3 prior failed surgical procedures. Fifty-three patients (10.5%) developed new or increased subjective facial paresthesias or numbness and 1 developed deafferentation pain; these symptoms resolved in 17 patients. Those who developed sensory loss had better long-term pain control (78% at 5 years).
Conclusions
Gamma Knife surgery proved to be safe and effective in the treatment of medically refractory trigeminal neuralgia and is of value for initial or recurrent pain management. Despite the goal of minimizing sensory loss with this procedure, some sensory loss may improve long-term outcomes. Pain relapse is amenable to additional GKS or another procedure.
Resumo:
Purpose: To determine the indication and outcomes for Gamma Knife stereotactic radiosurgery (GKSRS) in the care of patients with intracranial sarcomatous metastases. Methods and Materials: Data from 21 patients who underwent radiosurgery for 60 sarcomatous intracranial metastases (54 parenchymal and 6 dural-based) were studied. Nine patients had radiosurgery for solitary tumors and 12 for multiple tumors. The primary pathology was metastatic leiomyosarcoma (4 patients), osteosarcoma (3 patients), soft-tissue sarcoma (5 patients), chondrosarcoma (2 patients), alveolar soft part sarcoma (2 patients), and rhabdomyosarcoma, Ewing's sarcoma, liposarcoma, neurofibrosarcoma, and synovial sarcoma (1 patient each). Twenty patients received multimodality management for their primary tumor, and 1 patient had no evidence of systemic disease. The mean tumor volume was 6.2 cm 3 (range, 0.07-40.9 cm 3), and a median margin dose of 16 Gy was administered. Three patients had progressive intracranial disease despite fractionated whole-brain radiotherapy before SRS. Results: A local tumor control rate of 88% was achieved (including patients receiving boost, up-front, and salvage SRS). New remote brain metastases developed in 7 patients (33%). The median survival after diagnosis of intracranial metastasis was 16 months, and the 1-year survival rate was 61%. Conclusions: Gamma Knife radiosurgery was a well-tolerated and initially effective therapy in the management of patients with sarcomatous intracranial metastases. However, many patients, including those who also received fractionated whole-brain radiotherapy, developed progressive new brain disease. © 2010 Elsevier Inc. All rights reserved.
Resumo:
The aim in this study was to determine the outcomes of boost stereotactic radiosurgery, specifically Gamma Knife surgery (GKS), for recurrent primitive neuroectodermal tumors (PNETs) in children in whom initial multimodality management had failed.
Resumo:
The authors conducted a study to define the long-term outcomes and risks of stereotactic radiosurgery (SRS) for pediatric arteriovenous malformations (AVMs).