1000 resultados para RADIOCARBON AGE CALIBRATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

New radiocarbon calibration curves, IntCal04 and Marine04, have been constructed and internationally ratified to replace the terrestrial and marine components of IntCal98. The new calibration data sets extend an additional 2000 yr, from 0–26 cal kyr BP (Before Present, 0 cal BP = AD 1950), and provide much higher resolution, greater precision, and more detailed structure than IntCal98. For the Marine04 curve, dendrochronologically-dated tree-ring samples, converted with a box diffusion model to marine mixed-layer ages, cover the period from 0–10.5 cal kyr BP. Beyond 10.5 cal kyr BP, high-resolution marine data become available from foraminifera in varved sediments and U/Th-dated corals. The marine records are corrected with site-specific 14C reservoir age information to provide a single global marine mixed-layer calibration from 10.5–26.0 cal kyr BP. A substantial enhancement relative to IntCal98 is the introduction of a random walk model, which takes into account the uncertainty in both the calendar age and the 14C age to calculate the underlying calibration curve (Buck and Blackwell, this issue). The marine data sets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed here. The tree-ring data sets, sources of uncertainty, and regional offsets are presented in detail in a companion paper by Reimer et al. (this issue).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new calibration curve for the conversion of radiocarbon ages to calibrated (cal) ages has been constructed and internationally ratified to replace IntCal98, which extended from 0-24 cal kyr BP (Before Present, 0 cal BP = AD 1950). The new calibration data set for terrestrial samples extends from 0-26 cal kyr BP, but with much higher resolution beyond 11.4 cal kyr BP than IntCal98. Dendrochronologically-dated tree-ring samples cover the period from 0-12.4 cal kyr BP. Beyond the end of the tree rings, data from marine records (corals and foraminifera) are converted to the atmospheric equivalent with a site-specific marine reservoir correction to provide terrestrial calibration from 12.4-26.0 cal kyr BP. A substantial enhancement relative to IntCal98 is the introduction of a coherent statistical approach based on a random walk model, which takes into account the uncertainty in both the calendar age and the (super 14) C age to calculate the underlying calibration curve (Buck and Blackwell, this issue). The tree-ring data sets, sources of uncertainty, and regional offsets are discussed here. The marine data sets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed in brief, but details are presented in Hughen et al. (this issue a). We do not make a recommendation for calibration beyond 26 cal kyr BP at this time; however, potential calibration data sets are compared in another paper (van der Plicht et al., this issue).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The IntCal04 and Marine04 radiocarbon calibration curves have been updated from 12 cal kBP (cal kBP is here defined as thousands of calibrated years before AD 1950), and extended to 50 cal kBP, utilizing newly available data sets that meet the IntCal Working Group criteria for pristine corals and other carbonates and for quantification of uncertainty in both the 14C and calendar timescales as established in 2002. No change was made to the curves from 0-12 cal kBP. The curves were constructed using a Markov chain Monte Carlo (MCMC) implementation of the random walk model used for IntCal04 and Marine04. The new curves were ratified at the 20th International Radiocarbon Conference in June 2009 and are available in the Supplemental Material at www.radiocarbon.org.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The IntCal09 and Marine09 radiocarbon calibration curves have been revised utilizing newly available and updated data sets from C measurements on tree rings, plant macrofossils, speleothems, corals, and foraminifera. The calibration curves were derived from the data using the random walk model (RWM) used to generate IntCal09 and Marine09, which has been revised to account for additional uncertainties and error structures. The new curves were ratified at the 21st International Radiocarbon conference in July 2012 and are available as Supplemental Material at www.radiocarbon.org. The database can be accessed at http://intcal.qub.ac.uk/intcal13/.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New radiocarbon calibration curves, IntCal04 and Marine04, have been constructed and internationally ratified to replace the terrestrial and marine components of IntCal98. The new calibration data sets extend an additional 2000 yr, from 0-26 cal kyr BP (Before Present, 0 cal. BP = AD 1950), and provide much higher resolution, greater precision, and more detailed structure than IntCal98. For the Marine04 curve, dendrochronologically-dated tree-ring samples, converted with a box diffusion model to marine mixed-layer ages, cover the period from 0-10.5 call kyr BR Beyond 10.5 cal kyr BP, high-resolution marine data become available from foraminifera in varved sediments and U/Th-dated corals. The marine records are corrected with site-specific C-14 reservoir age information to provide a single global marine mixed-layer calibration from 10.5-26.0 cal kyr BR A substantial enhancement relative to IntCal98 is the introduction of a random walk model, which takes into account the uncertainty in both the calendar age and the C-14 age to calculate the underlying calibration curve (Buck and Blackwell, this issue). The marine data sets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed here. The tree-ring data sets, sources of uncertainty, and regional offsets are presented in detail in a companion paper by Reimer et al. (this issue).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new calibration curve for the conversion of radiocarbon ages to calibrated (cal) ages has been constructed and internationally ratified to replace ImCal98, which extended from 0-24 cal kyr BP (Before Present, 0 cal BP = AD 1950). The new calibration data set for terrestrial samples extends from 0-26 cal kyr BP, but with much higher resolution beyond 11.4 cal kyr BP than ImCal98. Dendrochronologically-dated tree-ring samples cover the period from 0-12.4 cal kyr BP. Beyond the end of the tree rings, data from marine records (corals and foraminifera) are converted to the atmospheric equivalent with a site-specific marine reservoir correction to provide terrestrial calibration from 12.4-26.0 cal kyr BP. A substantial enhancement relative to ImCal98 is the introduction of a coherent statistical approach based on a random walk model, which takes into account the uncertainty in both the calendar age and the C-14 age to calculate the underlying calibration curve (Buck and Blackwell, this issue). The tree-ring data sets, sources of uncertainty, and regional offsets are discussed here. The marine data sets and calibration curve for marine samples from the surface mixed layer (Marine 04) are discussed in brief, but details are presented in Hughen et al. (this issue a). We do not make a recommendation for calibration beyond 26 cal kyr BP at this time; however, potential calibration data sets are compared in another paper (van der Plicht et al., this issue).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An additional Heinrich ice-rafting event is identified between Heinrich events 5 and 6 in eight cores from the Labrador Sea and the northwest Atlantic Ocean. It is characterized by sediment rich in detrital carbonate (40% CaCO3) with high concentration of floating dropstones, high coarse-fraction (% > 150 µm) content, and has a sharp contact with the underlying but grades into the overlying hemipelagic sediment. It also shows lighter d18ONpl values, indicating freshening due to iceberg rafting and/or meltwater discharge. This event is correlated with Dansgaard-Oeschger event 14 and interpreted as an additional Heinrich event, H5a. The thickness of H5a in the Labrador Sea reaches up to 220 cm. This additional Heinrich event has also been reported in cores PS2644 and SO82-5 from the northern North Atlantic. With the recognition of H5a the temporal spacing between Heinrich events 1 to 6 becomes more uniform (~7 ka).

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal diffusion enrichment apparatus in use in Amsterdam before 1967, has been rebuilt in the Groningen Radiocarbon Dating Laboratory. It has been shown to operate reliably and reproducibly. A reasonable agreement exists between the theoretical calculations and the experimental results. The 14C enrichment of a CO sample is deduced from the simultaneous mass 30 enrichment, which is measured with a mass spectrometer. The relation between both enrichments follows from a series of calibration measurements. The over-all accuracy in the enrichment is a few percent, equivalent to a few hundred years in age. The main problem in dating very old samples is their possible contamination with recent carbon. Generally, careful sample selection and rigorous pretreatment reduce sample contamination to an acceptable value. Also, it has been established that laboratory contamination, due to a memory effect in the combustion system and to impurities in the oxygen and nitrogen gas used for combustion, can be eliminated. A detailed analysis shows that the counter background in our set-up is almost exclusively caused by cosmic ray muons. The measurement of 28 early glacial samples, mostly from North-west Europe, has yielded a consistent set of ages. These indicate the existence of three early glacial interstadials; using the Weichselian definitions: Amersfoort starting at 68 200 ± 1100, Brørup at 64 400 ± 800 and Odderade at 60 500 ± 600 years BP. This 14C chronology shows good agreement with the Camp Century chronology and the dated palaeo sea levels. The discrepancy in the age of the early part of the Last Glacial on the 14C time scale and on that adopted for the deep-sea d18 record, must probably be attributed to the use of a generalized d18 curve and a wrong interpretation of this curve in terms of three Barbados terraces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comprehensive published radiocarbon data from selected atmospheric records, tree rings, and recent organic matter were analyzed and grouped into 4 different zones (three for the Northern Hemisphere and one for the whole Southern Hemisphere). These C-14 data for the summer season of each hemisphere were employed to construct zonal, hemispheric, and global data sets for use in regional and global carbon model calculations including calibrating and comparing carbon cycle models. In addition, extended monthly atmospheric C-14 data sets for 4 different zones were compiled for age calibration purposes. This is the first time these data sets were constructed to facilitate the dating of recent organic material using the bomb C-14 curves. The distribution of bomb C-14 reflects the major zones of atmospheric circulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a sediment core AMK4-316 (460 cm long) on the basis of radiocarbon, oxygen isotope, and lithological data climatostratigraphy is established for time interval about 145 ka. The method of factor analysis and spline interpolation applied to data on distribution of planktic foraminifera species has allowed to reconstruct average annual and seasonal temperatures and salinity at the surface and at depth 100 m. The optimum of the Last Interglaciation (5e) is characterized by maximal temperatures, low amplitudes of seasonal fluctuations, and by increased thickness of the upper homogeneous layer. The glacial hydrological mode has arisen here 115 ka ago. Coolings outstripped appropriate events of the global continental glaciation. Minimal average annual temperatures (4-4.5°C) are reconstructed for 47-45, 42, 36, 29-30, and 10 ka. For 50-30 ka interval numerous strong temperature fluctuations that reflect migrations of the polar front are established. Maximal differences of salinity at the surface and depth 100 m showing influence of melting waters were in the beginning of deglaciations (135 and 20 ka) and repeatedly arose in 50-30 ka interval. The Last Glacial Maximum (18 ka) is characterized by the lowest salinity but not by a peak of low temperatures at the surface. Surface temperature was lowered up to 10 ka. Average annual surface temperature of the Holocene optimum was 2°C above the modern one and 2°C below temperature in the Interglaciation optimum (5e), thickness of the upper homogeneous layer exceeded 100 m.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Twenty-two 14C datings were performed at the central sector of the Paraná coast to define Holocene regressive barrier evolution. The barrier Pleistocene substratum was ascribed an age between 40 400 and 30 000 yr BP, but it can also represent the penultimate sea level highstand during marine isotope stage 5e. The Holocene barrier samples provided ages between 8542-8279 and 2987-2751 cal yr BP, and showed at least six age inversions that were related to age differences between in situ or low-distance transported shells or trunk fragments, and high-distance transported vegetal debris, wood fragments and organic matter samples. The regressive Holocene barrier age was 4402-4135 cal yr BP near the base, and 2987-2751 cal yr BP near the top. Most of the vegetal remains were transported by ebb tidal currents from the estuaries to the inner shelf below wave base level during the mid-Holocene highstand; they were transported onshore by storm waves and littoral currents during the sea level lowering after the sea level maximum, and were deposited mainly as middle shoreface swaley cross-stratification facies. © 2008.