998 resultados para RADICAL FORMATION
Resumo:
The radicals formed on gamma-radiolysis of a series of copolymers of methacrylic acid and acrylonitrile have been investigated by ESR spectroscopy. This series of copolymers spanned the full composition range and the study was carried out at 77 K and ambient temperature. The radicals formed in the copolymers at 77 and 303 K were found to be similar to those found in the two homopolymers, but in the intermediate composition range the presence of acrylonitrile propagation radicals was also detected. These radicals were not observed to be formed in significant quantities on the radiolysis of polyacrylonitrile. They are believed to result from a scission of the main chain at methacrylic acid/acrylonitrile diad sequences following loss of the methacrylic acid carboxyl group. At 77 K, the copolymers with high methacrylic acid contents were found to be more sensitive to radical formation than the methacrylic acid homopolymer, but this enhanced sensitivity was not evident at ambient temperature, where the G-values for radical formation for the copolymers were slightly less than the values for the homopolymers. (C) 2003 Society of Chemical Industry.
Resumo:
Puff-by-puff resolved gas phase free radicals were measured in mainstream smoke from Kentucky 2R4F reference cigarettes using ESR spectroscopy. Three spin-trapping reagents were evaluated: PBN, DMPO and DEPMPO. Two procedures were used to collect gas phase smoke on a puff-resolved basis: i) the accumulative mode, in which all the gas phase smoke up to a particular puff was bubbled into the trap (i.e., the 5th puff corresponded to the total smoke from the 1st to 5th puffs). In this case, after a specified puff, an aliquot of the spin trap was taken and analysed; or, ii) the individual mode, in which the spin trap was analysed and then replaced after each puff. Spin concentrations were determined by double-integration of the first derivative of the ESR signal. This was compared with the integrals of known standards using the TEMPO free radical. The radicals trapped with PBN were mainly carbon-centred, whilst the oxygen-centred radicals were identified with DMPO and DEPMPO. With each spin trap, the puff-resolved radical concentrations showed a characteristic pattern as a function of the puff number. Based on the spin concentrations, the DMPO and DEPMPO spin traps showed better trapping efficiencies than PBN. The implication for gas phase free radical analysis is that a range of different spin traps should be used to probe complex free radical reactions in cigarette smoke.
Resumo:
The reaction of the 17e nickel(I) radical [CpNi(IDipp)] (1, IDipp = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) with P4 results in a nickel tetraphosphide [{CpNi(IDipp)}2(μ-η1:η1-P4)] with a butterfly-P42− ligand; related chalcogenides [{CpNi(IDipp)}2(μ-E2)] (E = S, Se, Te) and [{CpNi(IDipp)}2(μ-E3)] (E = S, Se) are formed with S8, Se∞ and Te∞.
Resumo:
The toxic effects of chronic ethanol ingestion were evaluated in male adult rats for 300 days. The animals were divided into three groups: the controls received only tap water as liquid diet; the chronic ethanol ingestion group received only ethanol solution (30%) in semivoluntary research; and the withdrawal group received the same treatment as chronic ethanol-treated rats until 240 days, after which they reverted to drinking water. Chronic ethanol ingestion induced increased lipoperoxide levels and acid phosphatase activities in seminal vesicles. Cu-Zn superoxide dismutase (SOD) decreased from its basal level 70.8 +/- 3.5 to 50.4 +/- 1.6 U/mg protein at 60 days of chronic ethanol ingestion. As changes in GSH-PX activity were observed in rats after chronic ethanol ingestion, while SOD activities were decreased in these animals, it is assumed that superoxide anion elicits lipoperoxide formation and induces cell damage before being converted to hydrogen peroxide by SOD. Ethanol withdrawal induced increased SOD activity and reduced seminar vesicle damage, indicating that the toxic effects were reversible, since increased SOD activity was adequate to scavenge superoxide radical formation. Superoxide radical is an important intermediate in the toxicity of chronic ethanol ingestion. Copyright (C) 1996 Elsevier B.V. Ltd
Resumo:
Live-imaging techniques (LIT) utilize target-specific fluorescent dyes to visualize biochemical processes using confocal and multiphoton scanning microscopy, which are increasingly employed as non-invasive approach to physiological in-vivo and ex-vivo studies. Here we report application of LIT to bivalve gills for ex-vivo analysis of gill physiology and mapping of reactive oxygen (ROS) and nitrogen (RNS) species formation in the living tissue. Our results indicate that H2O2, HOO. and ONOO- radicals (assessed through C-H2DFFDA staining) are mainly formed within the blood sinus of the filaments and are likely to be produced by hemocytes as defense against invading pathogens. The oxidative damage in these areas is controlled by enhanced CAT (catalase) activities recorded within the filaments. The outermost areas of the ciliated epithelial cells composing the filaments, concentrated the highest mitochondrial densities (MTK Deep Red 633 staining) and the most acidic pH values (as observed with ageladine-a). These mitochondria have low (depolarized) membrane potentials (D psi m) (JC-1 staining), suggesting that the high amounts of ATP required for ciliary beating may be in part produced by non-mitochondrial mechanisms, such as the enzymatic activity of an ATP-regenerating kinase. Nitric oxide (NO, DAF-2DA staining) produced in the region of the peripheral mitochondria may have an effect on mitochondrial electron transport and possibly cause the low membrane potential. High DAF-2DA staining was moreover observed in the muscle cells composing the wall of the blood vessels where NO may be involved in regulating blood vessel diameter. On the ventral bend of the gills, subepithelial mucus glands (SMG) contain large mucous vacuoles showing higher fluorescence intensities for O2.- (DHE staining) than the rest of the tissue. Given the antimicrobial properties of superoxide, release of O2.- into the mucus may help to avoid the development of microbial biofilms on the gill surface. However, cells of the ventral bends are paying a price for this antimicrobial protection, since they show significantly higher oxidative damage, according to the antioxidant enzyme activities and the carbonyl levels, than the rest of the gill tissue. This study provides the first evidence that one single epithelial cell may contain mitochondria with significantly different membrane potentials. Furthermore, we provide new insight into ROS and RNS formation in ex-vivo gill tissues which opens new perspectives for unraveling the different ecophysiological roles of ROS and RNS in multifunctional organs such as gills.
Resumo:
Cu,Zn-superoxide dismutase (SOD) is known to be a locus of mutation in familial amyotrophic lateral sclerosis (FALS). Transgenic mice that express a mutant Cu,Zn-SOD, Gly-93--> Ala (G93A), have been shown to develop amyotrophic lateral sclerosis (ALS) symptoms. We cloned the FALS mutant, G93A, and wild-type cDNA of human Cu,Zn-SOD, overexpressed them in Sf9 insect cells, purified the proteins, and studied their enzymic activities for catalyzing the dismutation of superoxide anions and the generation of free radicals with H2O2 as substrate. Our results showed that both enzymes contain one copper ion per subunit and have identical dismutation activity. However, the free radical-generating function of the G93A mutant, as measured by the spin trapping method, is enhanced relative to that of the wild-type enzyme, particularly at lower H2O2 concentrations. This is due to a small, but reproducible, decrease in the value of Km for H2O2 for the G93A mutant, while the kcat is identical for both enzymes. Thus, the ALS symptoms observed in G93A transgenic mice are not caused by the reduction of Cu,Zn-SOD activity with the mutant enzyme; rather, it is induced by a gain-of-function, an enhancement of the free radical-generating function. This is consistent with the x-ray crystallographic studies showing the active channel of the FALS mutant is slightly larger than that of the wild-type enzyme; thus, it is more accessible to H2O2. This gain-of-function, in part, may provide an explanation for the association between ALS and Cu,Zn-SOD mutants.
Resumo:
1. The ability of myo-inositol polyphosphates to inhibit iron-catalysed hydroxyl radical formation was studied in a hypoxanthine/xanthine oxidase system [Graf, Empson and Eaton (1987) J. Biol. Chem. 262, 11647-11650]. Fe3+ present in the assay reagents supported some radical formation, and a standard assay, with 5 microM Fe3+ added, was used to investigate the specificity of compounds which could inhibit radical generation. 2. InsP6 (phytic acid) was able to inhibit radical formation in this assay completely. In this respect it was similar to the effects of the high affinity Fe3+ chelator Desferral, and dissimilar to the effects of EDTA which, even at high concentrations, still allowed detectable radical formation to take place. 3. The six isomers of InsP5 were purified from an alkaline hydrolysate of InsP6 (four of them as two enantiomeric mixtures) and they were compared with InsP6 in this assay. Ins(1,2,3,4,6)P5 and D/L-Ins(1,2,3,4,5)P5 were similar to InsP6 in that they caused a complete inhibition of iron-catalysed radical formation at > 30 microM. Ins(1,3,4,5,6)P5 and D/L-Ins(1,2,4,5,6)P5, however, were markedly less potent than InsP6, and did not inhibit radical formation completely; even when Ins(1,3,4,5,6)P5 was added up to 600 microM, significant radical formation was still detected. Thus InsP5s lacking 2 or 1/3 phosphates are in this respect qualitatively different from InsP6 and the other InsP5s. 4. scyllo-Inositol hexakisphosphate was also tested, and although it caused a greater inhibition than Ins(1,3,4,5,6)P5, it too still allowed detectable free radical formation even at 600 microM. 5. We conclude that the 1,2,3 (equatorial-axial-equatorial) phosphate grouping in InsP6 has a conformation that uniquely provides a specific interaction with iron to inhibit totally its ability to catalyse hydroxyl radical formation; we suggest that a physiological function of InsP6 might be to act as a 'safe' binding site for iron during its transport through the cytosol or cellular organelles
Resumo:
Peroxy radicals were measured onboard two scientific aircrafts during the AMMA (African Monsoon Multidisciplinary Analysis) campaign in summer 2006. This paper reports results from the flight on 16 August 2006 during which measurements of HO2 by laser induced fluorescence spectroscopy at low pressure (LIF-FAGE) and total peroxy radicals (RO2* = HO2+ΣRO2, R = organic chain) by two similar instruments based on the peroxy radical chemical amplification (PeRCA) technique were subject of a blind intercomparison. The German DLR-Falcon and the British FAAM-BAe-146 flew wing tip to wing tip for about 30 min making concurrent measurements on 2 horizontal level runs at 697 and 485 hPa over the same geographical area in Burkina Faso. A full set of supporting measurements comprising photolysis frequencies, and relevant trace gases like CO, NO, NO2, NOy, O3 and a wider range of VOCs were collected simultaneously. Results are discussed on the basis of the characteristics and limitations of the different instruments used. Generally, no data bias are identified and the RO2* data available agree quite reasonably within the instrumental errors. The [RO2*]/[HO2] ratios, which vary between 1:1 and 3:1, as well as the peroxy radical variability, concur with variations in photolysis rates and in other potential radical precursors. Model results provide additional information about dominant radical formation and loss processes.
Resumo:
Despite being one of the most important antioxidant defenses, Cu,Zn-superoxide dismutase (Sod1) has been frequently associated with harmful effects, including neurotoxicity. This toxicity has been attributed to immature forms of Sod1 and extraneous catalytic activities. Among these, the ability of Sod1 to function as a peroxidase may be particularly relevant because it is increased in bicarbonate buffer and produces the reactive carbonate radical. Despite many studies, how this radical forms remains unknown. To address this question, we systematically studied hSod1 peroxidase activity in the presence of nitrite, formate, and bicarbonate-carbon dioxide. Kinetic analyses of hydrogen peroxide consumption and of nitrite, formate, and bicarbonate-carbon dioxide oxidation showed that the Sod1-bound hydroxyl-like oxidant functions in the presence of nitrite and formate. In the presence of bicarbonate-carbon dioxide, this oxidant is replaced by peroxymonocarbonate, which is then reduced to the carbonate radical. Peroxymonocarbonate intermediacy was evidenced by (13)C NMR experiments showing line broadening of its peak in the presence of Zn,ZnSod1. In agreement, peroxymonocarbonate was docked into the hSod1 active site, where it interacted with the conserved Arg(143). Also, a reaction between peroxymonocarbonate and Cu(I)Sod1 was demonstrated by stopped-flow experiments. Kinetic simulations indicated that peroxymonocarbonate is produced during Sod1 turnover and not in bulk solution. In the presence of bicarbonate-carbon dioxide, sustained hSod1-mediated oxidations occurred with low steady-state concentrations of hydrogen peroxide (4-10 mu M). Thus, carbonate radical formation through peroxymonocarbonate may be a key event in Sod1-induced toxicity.
Resumo:
A novel protein superfamily with over 600 members was discovered by iterative profile searches and analyzed with powerful bioinformatics and information visualization methods. Evidence exists that these proteins generate a radical species by reductive cleavage of S-adenosylmethionine (SAM) through an unusual Fe-S center. The superfamily (named here Radical SAM) provides evidence that radical-based catalysis is important in a number of previously well- studied but unresolved biochemical pathways and reflects an ancient conserved mechanistic approach to difficult chemistries. Radical SAM proteins catalyze diverse reactions, including unusual methylations, isomerization, sulfur insertion, ring formation, anaerobic oxidation and protein radical formation. They function in DNA precursor, vitamin, cofactor, antibiotic and herbicide biosynthesis and in biodegradation pathways. One eukaryotic member is interferon-inducible and is considered a candidate drug target for osteoporosis; another is observed to bind the neuronal Cdk5 activator protein. Five defining members not previously recognized as homologs are lysine 2,3-aminomutase, biotin synthase, lipoic acid synthase and the activating enzymes for pyruvate formate-lyase and anaerobic ribonucleotide reductase. Two functional predictions for unknown proteins are made based on integrating other data types such as motif, domain, operon and biochemical pathway into an organized view of similarity relationships.
Resumo:
The copper catalysed oxidation of homocysteine has been studied by electron paramagnetic resonance (EPR) spectroscopy and spin trapping techniques to determine the nature of free radical species formed under varying experimental conditions. Three radicals; thiyl, alkyl and hydroxyl were detected with hydroxyl being predominant. A reaction mechanism is proposed involving Fenton chemistry. Inclusion of catalase to test for intermediate generation of hydrogen peroxide showed a marked reduction in amount of hydroxyl radical generated. In contrast, the addition of superoxide dismutase showed no significant effect on the level of hydroxyl radical formed. Enhanced radical formation was observed at higher levels of oxygen, an effect which has consequences for differential oxygen levels in arterial and venous systems. Implications are drawn for a higher incidence of atherosclerotic plaque formation in arteries versus veins. © 2006 - IOS Press and the authors. All rights reserved.
Resumo:
Reactions of chloroform over triphenylphosphine-protected Au nanoparticles have been studied using electron paramagnetic resonance (EPR) spectroscopy and a spin trapping technique. Two competing reactions, abstraction of hydrogen and halogen atoms, were identified. The hydrogen abstraction reaction showed an inverse kinetic isotope effect. Treatment of nanoparticles with oxidizing or reducing reagents made it possible to tune the selectivity of radical formation from halogen to hydrogen (deuterium) abstraction. Treatment with PbO2 promoted the deuterium abstraction reaction followed by the loss of nanoparticle activity, whereas treatment with NaBH4 regenerated the nanoparticle activity towards Cl atom abstraction. X-ray photoelectron spectroscopy showed an increased Au:P ratio upon treatment with oxidizing reagents. This is likely due to the oxidation of some phosphine ligands to phosphine oxides which then desorb from the nanoparticle surface. © 2009 The Royal Societ of Chemistry.
Resumo:
Transfer of reaction products formed on the surfaces of two mutually rubbed dielectric solids makes an important if not dominating contribution to triboelectricity. New evidence in support of this statement is presented in this report, based on analytical electron microscopy coupled to electrostatic potential mapping techniques. Mechanical action on contacting surface asperities transforms them into hot-spots for free-radical formation, followed by electron transfer producing cationic and anionic polymer fragments, according to their electronegativity. Polymer ions accumulate creating domains with excess charge because they are formed at fracture surfaces of pulled-out asperities. Another factor for charge segregation is the low polymer mixing entropy, following Flory and Huggins. The formation of fractal charge patterns that was previously described is thus the result of polymer fragment fractal scatter on both contacting surfaces. The present results contribute to the explanation of the centuries-old difficulties for understanding the triboelectric series and triboelectricity in general, as well as the dissipative nature of friction, and they may lead to better control of friction and its consequences.
Resumo:
The presence of bacteria in the midgut of mosquitoes antagonizes infectious agents, such as Dengue and Plasmodium, acting as a negative factor in the vectorial competence of the mosquito. Therefore, knowledge of the molecular mechanisms involved in the control of midgut microbiota could help in the development of new tools to reduce transmission. We hypothesized that toxic reactive oxygen species (ROS) generated by epithelial cells control bacterial growth in the midgut of Aedes aegypti, the vector of Yellow fever and Dengue viruses. We show that ROS are continuously present in the midgut of sugar-fed (SF) mosquitoes and a blood-meal immediately decreased ROS through a mechanism involving heme-mediated activation of PKC. This event occurred in parallel with an expansion of gut bacteria. Treatment of sugar-fed mosquitoes with increased concentrations of heme led to a dose dependent decrease in ROS levels and a consequent increase in midgut endogenous bacteria. In addition, gene silencing of dual oxidase (Duox) reduced ROS levels and also increased gut flora. Using a model of bacterial oral infection in the gut, we show that the absence of ROS resulted in decreased mosquito resistance to infection, increased midgut epithelial damage, transcriptional modulation of immune-related genes and mortality. As heme is a pro-oxidant molecule released in large amounts upon hemoglobin degradation, oxidative killing of bacteria in the gut would represent a burden to the insect, thereby creating an extra oxidative challenge to the mosquito. We propose that a controlled decrease in ROS levels in the midgut of Aedes aegypti is an adaptation to compensate for the ingestion of heme.
Resumo:
Previous studies have observed changes in the lacrimal gland and ocular surface related to diabetes mellitus and related it to insulin resistance or insufficiency and oxidative damage. The aim of this study was to evaluate whether insulin treatment inhibits those changes. Diabetes was induced in male Wistar rats with a single intravenous injection of streptozotocin and a subgroup was treated with insulin. After 5 and 10 weeks, the three groups (n = 5-10/group/experimental procedure) were compared for biochemical, functional, and histological parameters. After 5 weeks, changes in morphology and increased numbers of lipofucsin-like inclusions were observed in lacrimal glands of diabetic but not insulin-treated rats. After 5 weeks, malonaldehyde and total peroxidase activity were significantly higher in diabetic rats, but similar to control in insulin-treated diabetic rats (P = 0.03, P = 0.02, respectively). Our data indicate that diabetes induces histological alterations in lacrimal gland and suggests that hyperglycemia-related oxidative stress may participate in diabetic dry eye syndrome. Prevention by insulin replacement suggests direct hormone action and/or benefit by early sub optimal metabolic control.