459 resultados para Quenched-FRET
Resumo:
Hereditary hemochromatosis (HH) is a common autosomal disorder of iron metabolism mainly affecting Caucasian populations. Three recurrent disease-associated mutations have been detected in the hemochromatosis gene (HFE): C282Y, H63D, and S65C. Although HH phenotype has been associated with all three mutations, C282Y is considered the most relevant mutation responsible for hemochromatosis. Clinical complications of HH include cirrhosis of the liver, congestive cardiac failure and cardiac arrhythmias, endocrine pancreatic disease, which can be prevented by early diagnosis and treatment. Therefore, a reliable genotyping method is required for presymptomatic diagnosis. We describe the simultaneous detection of the C282Y, H63D and S65C mutations in the hemochromatosis gene by real-time PCR followed by melting curve analysis using fluorescence resonance energy transfer (FRET) probes. The acceptor fluorophore may be replaced by a quencher, increasing multiplex possibilities. Real-time PCR results were compared to the results of sequencing and conventional PCR followed by restriction digestion and detection by agarose gel electrophoresis (PCR-RFLP). Genotypes from 80 individuals obtained both by the conventional PCR-RFLP method and quenched-FRET real-time PCR were in full agreement. Sequencing also confirmed the results obtained by the new method, which proved to be an accurate, rapid and cost-effective diagnostic assay. Our findings demonstrate the usefulness of real-time PCR for the simultaneous detection of mutations in the HFE gene, which allows a reduction of a significant amount of time in sample processing compared to the PCR-RFLP method, eliminates the use of toxic reagents, reduces the risk of contamination in the laboratory, and enables full process automation.
Resumo:
Fluorescent proteins from the green fluorescent protein family strongly interact with CdSe/ZnS and ZnSe/ZnS nanocrystals at neutral pH. Green emitting CdSe/ZnS nanocrystals and red emitting fluorescent protein dTomato constitute a 72% efficiency FRET system with the largest alteration of the overall photoluminescence profile, following complex formation, observed so far. The substitution of ZnSe/ZnS for CdSe/ZnS nanocrystals as energy donors enabled the use of a green fluorescent protein, GFP5, as energy acceptor. Violet emitting ZnSe/ZnS nanocrystals and green GFP5 constitute a system with 43% FRET efficiency and an unusually strong sensitized emission. ZnSe/ZnS-GFP5 provides a cadmium-free, high-contrast FRET system that covers only the high-energy part of the visible spectrum, leaving room for simultaneous use of the yellow and red color channels. Anisotropic fluorescence measurements confirmed the depolarization of GFP5 sensitized emission.
Resumo:
We consider a kinetic Ising model which represents a generic agent-based model for various types of socio-economic systems. We study the case of a finite (and not necessarily large) number of agents N as well as the asymptotic case when the number of agents tends to infinity. The main ingredient are individual decision thresholds which are either fixed over time (corresponding to quenched disorder in the Ising model, leading to nonlinear deterministic dynamics which are generically non-ergodic) or which may change randomly over time (corresponding to annealed disorder, leading to ergodic dynamics). We address the question how increasing the strength of annealed disorder relative to quenched disorder drives the system from non-ergodic behavior to ergodicity. Mathematically rigorous analysis provides an explicit and detailed picture for arbitrary realizations of the quenched initial thresholds, revealing an intriguing ""jumpy"" transition from non-ergodicity with many absorbing sets to ergodicity. For large N we find a critical strength of annealed randomness, above which the system becomes asymptotically ergodic. Our theoretical results suggests how to drive a system from an undesired socio-economic equilibrium (e. g. high level of corruption) to a desirable one (low level of corruption).
Resumo:
Y-Ba-Cu-O samples with additions of Y2O3 and CeO2 were quenched during seeded isothermal melt processing and examined by optical microscopy and scanning electron microscopy. Large YBa2Cu3O7-y (Y123) particles in the starting powder were found to form a distinct type of melt during heating, which was unaffected by the Y2O3 or CeO2 additives. This type of melt later formed regions with a low concentration of Y2BaCuO5 (Y211) particles in the Y123 matrix. The maximum growth rate of Y123 that could be sustained in the sample was found to be lower in the melt formed from large Y123 particles, and this may lead to growth accidents and subgrains in some samples.
Resumo:
Glucose sensing is an issue with great interest in medical and biological applications. One possible approach to glucose detection takes advantage of measuring changes in fluorescence resonance energy transfer (FRET) between a fluorescent donor and an acceptor within a protein which undergoes glucose-induced changes in conformation. This demands the detection of fluorescent signals in the visible spectrum. In this paper we analyzed the emission spectrum obtained from fluorescent labels attached to a protein which changes its conformation in the presence of glucose using a commercial spectrofluorometer. Different glucose nanosensors were used to measure the output spectra with fluorescent signals located at the cyan and yellow bands of the spectrum. A new device is presented based on multilayered a-SiC:H heterostructures to detect identical transient visible signals. The transducer consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructure optimized for the detection of the fluorescence resonance energy transfer between fluorophores with excitation in the violet (400 nm) and emissions in the cyan (470 nm) and yellow (588 nm) range of the spectrum. Results show that the device photocurrent signal measured under reverse bias and using appropriate steady state optical bias, allows the separate detection of the cyan and yellow fluorescence signals presented.
Resumo:
Glucose sensing is an issue with great interest in medical and biological applications. One possible approach to glucose detection takes advantage of measuring changes in fluorescence resonance energy transfer (FRET) between a fluorescent donor and an acceptor within a protein which undergoes glucose-induced changes in conformation. This demands the detection of fluorescent signals in the visible spectrum. In this paper we analyzed the emission spectrum obtained from fluorescent labels attached to a protein which changes its conformation in the presence of glucose using a commercial spectrofluorometer. Different glucose nanosensors were used to measure the output spectra with fluorescent signals located at the cyan and yellow bands of the spectrum. A new device is presented based on multilayered a-SiC:H heterostructures to detect identical transient visible signals. The transducer consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructure optimized for the detection of the fluorescence resonance energy transfer between fluorophores with excitation in the violet (400 nm) and emissions in the cyan (470 nm) and yellow (588 nm) range of the spectrum. Results show that the device photocurrent signal measured under reverse bias and using appropriate steady state optical bias, allows the separate detection of the cyan and yellow fluorescence signals. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
FRET, FLIM, living cells, hippocampal neurons, synapses, space and time resolved spectroscopy
Resumo:
FRET-FLIM, ENERGY TRANSFER, LIFETIME, DECAY ASSOCIATED SPECTRUM, DAS, KINASE, MAGUKS, SINGLE PHOTON COUNTING, PICOSECOND-TIME RESOLVED FLUORESCENCE SPECTROSCOPY, GFP, CFP, YFP, TOPAZ, NANOMETER, MICROSCOPY, LYMPHOCYTES, LCK, SAP97
Resumo:
A real-time polymerase chain reaction (PCR) assay with fluorescence resonance energy transfer (FRET) hybridisation probes combined with melting curve analysis was developed to detect Schistosoma japonicum in experimentally infected snails and in faecal samples of infected mice. This procedure is based on melting curve analysis of a hybrid between an amplicon from the S. japonicum internal transcribed spacer region 2 sequence, which is a 192-bp S. japonicum-specific sequence, and fluorophore-labelled specific probes. Real-time FRET PCR could detect as little as a single cercaria artificially introduced into a pool of 10 non-infected snails and a single egg inoculated in 100 mg of non-infected mouse faeces. All S. japonicum-infected snails and all faecal samples from infected mice were positive. Non-infected snails, non-infected mouse faeces and genomic DNA from other parasites were negative. This assay is rapid and has potential for epidemiological S. japonicum surveys in snails, intermediate hosts and faecal samples of final hosts.
Resumo:
The kinetic roughening of a stable oil-air interface moving in a Hele-Shaw cell that contains a quenched columnar disorder (tracks) has been studied. A capillary effect is responsible for the dynamic evolution of the resulting rough interface, which exhibits anomalous scaling. The three independent exponents needed to characterize the anomalous scaling are determined experimentally. The anomalous scaling is explained in terms of the initial acceleration and subsequent deceleration of the interface tips in the tracks coupled by mass conservation. A phenomenological model that reproduces the measured global and local exponents is introduced.
Resumo:
Mechanical force modulates myriad cellular functions including migration, alignment, proliferation, and gene transcription. Mechanotransduction, the transmission of mechanical forces and its translation into biochemical signals, may be mediated by force induced protein conformation changes, subsequently modulating protein signaling. For the paxillin and focal adhesion kinase interaction, we demonstrate that force-induced changes in protein complex conformation, dissociation constant, and binding Gibbs free energy can be quantified by lifetime-resolved fluorescence energy transfer microscopy combined with intensity imaging calibrated by fluorescence correlation spectroscopy. Comparison with in vitro data shows that this interaction is allosteric in vivo. Further, spatially resolved imaging and inhibitor assays show that this protein interaction and its mechano-sensitivity are equal in the cytosol and in the focal adhesions complexes indicating that the mechano-sensitivity of this interaction must be mediated by soluble factors but not based on protein tyrosine phosphorylation.
Resumo:
We make an experimental characterization of the effect that static disorder has on the shape of a normal Saffman-Taylor finger. We find that static noise induces a small amplitude and long wavelength instability on the sides of the finger. Fluctuations on the finger sides have a dominant wavelength, indicating that the system acts as a selective amplifier of static noise. The dominant wavelength does not seem to be very sensitive to the intensity of static noise present in the system. On the other hand, at a given flow rate, rms fluctuations of the finger width, decrease with decreasing intensity of static noise. This might explain why the sides of the fingers are flat for typical Saffman-Taylor experiments. Comparison with previous numerical studies of the effect that temporal noise has on the Saffman-Taylor finger, leads to conclude that the effect of temporal noise and static noise are similar. The behavior of fluctuations of the finger width found in our experiments, is qualitatively similar to one recently reported, in the sense that, the magnitude of the width fluctuations decays as a power law of the capillary number, at low flow rates, and increases with capillary number for larger flow rates.