1000 resultados para Queen production
Resumo:
Queen, male and worker production was studied during one year in three Plebeia remota colonies from Atlantic Rainforest in Cunha, Sao Paulo State, and two from a subtropical Araucaria forest in Prudentopolis, Parana State. All the colonies were kept in Sao Paulo city during our study. Plebeia remota has reproductive diapause during autumn and winter, which makes its biology of special interest. Brood production begins before spring, renewing the colony cycle. We sampled brood combs monthly in these five colonies. The number of cells in each comb varied significantly with time of the year; the smallest brood combs appear to be a consequence of reduced food availability. However, worker, queen and male frequencies did not differ significantly in time, and this presumably is due to the fact that they all are necessary for the growth, maintenance and reproduction of the colony. Although some molecular, morphological and behavioral differences have been detected in several studies comparing populations from Cunha and from Prudentopolis, we did not find significant differences between the colonies from these two localities in number of brood cells and worker, queen and male production.
Resumo:
Split sex ratio-a pattern where colonies within a population specialize in either male or queen production-is a widespread phenomenon in ants and other social Hymenoptera. It has often been attributed to variation in colony kin structure, which affects the degree of queen-worker conflict over optimal sex allocation. However, recent findings suggest that split sex ratio is a more diverse phenomenon, which can evolve for multiple reasons. Here, we provide an overview of the main conditions favouring split sex ratio. We show that each split sex-ratio type arises due to a different combination of factors determining colony kin structure, queen or worker control over sex ratio and the type of conflict between colony members.
Resumo:
Pós-graduação em Zootecnia - FMVZ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We evaluated the ratio between the number of pollen foragers and the total number of bees entering colonies of Melipona bicolor, a facultative polygynous species of stingless bees. The variables considered in our analysis were: seasonality, colony size and the number of physogastric queens in each colony. The pollen forager ratios varied significantly between seasons; the ratio was higher in winter than in summer. However, colony size and number of queens per colony had no significant effect. We conclude that seasonal differences in pollen harvest are related to the production of sexuals and to the number of individuals and their body size.
Resumo:
Queens and workers in social insect colonies can differ in reproductive goals such as colony-level sex allocation and production of males by workers. That the presence of queen(s) often seems to affect worker behaviour in situations of potential conflict has given rise to the idea of queen control over reproduction. In small colonies queen control is possible via direct aggression against workers, but in large colonies queens cannot be effectively aggressive towards all the workers. This, plus evidence that queen-produced chemicals affect worker behaviour, has led to the conclusion that physical intimidation has been replaced by pheromonal queen control, whereby queen(s) chemically manipulate workers into behaving in ways that increase the queen's fitness at the worker's expense. It is argued in this paper, however, that pheromonal queen control has never conclusively been demonstrated and is evolutionarily difficult to justify. Proposed examples of pheromonal control are more likely to be honest signals, with workers' responses increasing their own inclusive fitness. A series of experimental and field studies in which positive results would give prima facie evidence for pheromonal queen control is suggested. Finally, three terms are defined: (1) pheromonal queen control for workers or subordinate queens being chemically manipulated into acting against their own best interests; (2) pheromonal queen signal for situations where workers or subordinate queens react to queen pheromones in ways that increase their, and possibly the queens', inclusive fitness; and (3) pheromonal queen effect where changes in the workers' or subordinate queens' behaviour have an unknown consequence on their inclusive fitness.
Resumo:
The influence of various social factors on the production of males was investigated in the Argentine ant, Iridomyrmex humilis. In this polygynous species, the workers which are monomorphic are unable to lay reproductive eggs, so all the males are the progeny of the queens. Although male eggs appear to be laid by mated queens throughout the year, in large stock colonies males are reared periodically (every 3 or 4 months); males develop from brood taken from these colonies at any point in the cycle and given queenless or queenright (1 to 5 queens) units. This is in striking contrast to many other species of ants where it is generally assumed that male eggs are laid seasonnally. Comparative experiments suggest that several related factors influence the rearing of males as far as the pupal stage. Worker/larva ratio: The proportion of male larvae developing in standardized units in which the worker/larva ratio was varied from 0.25 to 25 demonstrated that low ratios inhibit male production. Queen influence: In standardized units where the worker/larva ratio was high the presence of queens did not inhibit the rearing of males suggesting that there is no queen inhibitory pheromone controlling male experimental production. Data suggest evidence that queens prevent male production by means of appropriation of food. Diet: Male larvae failed to pupate in experimental societies deprived of protein. Thus, the production of males appears to be controlled by the amount of food available to larvae. This depends on foraging activity, the quantity of brood in relation to the number of workers and the number of queens in the society.
Resumo:
The ability of workers to produce male individuals is reported here for the first time in a species of the formicine ant genus Prolasius. We show that Prolasius advenus workers possess ovaries and demonstrate that they are able to produce adult males in queenless colonies. We also experimentally tested the influence of queen volatiles on the level of worker reproduction. Workers produced fewer eggs in treatments where they could perceive odors from queens. Some volatile compounds emitted by queens may thus have a signaling or inhibitory effect on worker reproduction. This effect of queen presence did not entirely stop worker reproduction, however, as adult males still emerged under these conditions. Worker-produced males were absent only in treatments with the physical presence of queens. Dissections of workers collected from queenright nests in the field revealed signs of egg-laying activity in more than half of individuals. Together, these results suggest that in nature P. advenus workers produce males at least in orphaned colonies or in situations where the physical presence of queens is limited.
Resumo:
The development of queen and worker phenotypes in ants has been believed to be largely determined from environmental effects. We provide evidence that the production of discrete phenotypes is also influenced by genetic interaction effects. During the development of eggs into adults, some patrilines among offspring of multiply mated Pogonomyrmex rugosus ant queens became more common in workers while others became overrepresented in queens. Controlled crosses showed that these changes stem from some parental genome combinations being compatible for producing one phenotype but less compatible for the other. Genetic interaction effects on caste may be maintained over evolutionary time because the fitness of an allele depends on its genetic background.
Resumo:
Field censuses and laboratory experiments show that in the Argentine ant, Iridomyrmex humilis (Mayr), c. 90% of the queens are executed by workers in May, at the beginning of the reproductive season. The reduction in the number of queens probably decreases the inhibition exerted by queens on the differentiation of sexuals and thus allows the production of new queens and males shortly thereafter. In the laboratory, there was no correlation between the percentage of queens executed and their weight or fecundity. At the time of execution of queens, nearly all queens were of the same age; less than 1 year. Therefore it is not likely that the age of queens plays any role in the choice that workers make in the queens they executed. Execution of these queens results in a heavy energetic cost for the colony which amounts c. 8% of the total biomass. This behaviour of workers executing nestmate queens is discussed with regard to possible evolutionary significance at the queen and worker level.
Resumo:
We compare the primary sex ratio (proportion o haploid eggs laid by queens) and the secondary sex ratio (proportion of male pupae produced) in the Argentine ant Iridomyrmex humilis with the aim of investigating whether workers control the secondary sex ratio by selectively eliminating male brood. The proportion of haploid eggs produced by queens was close to 0.5 in late winter, decreased to less than 0.3 in spring and summer, and increased again to a value close to 0.5 in fall. Laboratory experiments indicate that temperture is a proximate factor influencing the primary sex ratio with a higher proportion of haploid eggs being laid at colder temperatures. Production of queen pupae ceased in mid-June, about three weeks before that of male pupae. After this time only worker pupae were produced. During the period of production of sexuals, the proportion of male pupae ranged from 0.30 to 0.38. Outside this period no males were reared although haploid eggs were produced all the year round by queens. Workers thus exert a control on the secondary sex ratio by eliminating a proportion of the male brood during the period of sexual production and eliminating all the males during the remainder of the cycle. These data are consistent with workers preferring a more female-biased sex ratio than queens. The evolutionary significance of the production of male eggs by queens all the year round is as yet unclear. It may be a mechanism allowing queen replacement in the case of the death of the queens in the colony.
Resumo:
We study male parentage and between-colony variation in sex allocation and sexual production in the desert ant Crematogaster smithi, which usually has only one singly-mated queen per nest. Colonies of this species are known to temporarily store nutrients in the large fat body of intermorphs, a specialized female caste intermediate in morphology between queens and workers. Intermorphs repackage at least part of this fat into consumable but viable male-destined eggs. If these eggs sometimes develop instead of being eaten, intermorphs will be reproductive competitors of the queen but-due to relatedness asymmetries-allies of their sister worker. Using genetic markers we found a considerable proportion of non-queen sons in some, but not all, colonies. Even though intermorphs produce ∼1.7× more eggs than workers, their share in the parentage of adult males is estimated to be negligible due to their small number compared to workers. Furthermore, neither colony-level sex allocation nor overall sexual production was correlated with intermorph occurrence or number. We conclude that intermorph-laid eggs typically do not survive and that the storage of nutrients and their redistribution as eggs by intermorphs is effectively altruistic.
Resumo:
Insect societies are paramount examples of cooperation, yet they also harbor internal conflicts whose resolution depends on the power of the opponents. The male-haploid, female-diploid sex-determining system of ants causes workers to be more related to sisters than to brothers, whereas queens are equally related to daughters and sons. Workers should thus allocate more resources to females than to males, while queens should favor an equal investment in each sex. Female-biased sex allocation and manipulation of the sex ratio during brood development suggest that workers prevail in many ant species. Here, we show that queens of Formica selysi strongly influenced colony sex allocation by biasing the sex ratio of their eggs. Most colonies specialized in the production of a single sex. Queens in female-specialist colonies laid a high proportion of diploid eggs, whereas queens in male-specialist colonies laid almost exclusively haploid eggs, which constrains worker manipulation. However, the change in sex ratio between the egg and pupae stages suggests that workers eliminated some male brood, and the population sex-investment ratio was between the queens' and workers' equilibria. Altogether, these data provide evidence for an ongoing conflict between queens and workers, with a prominent influence of queens as a result of their control of egg sex ratio.
Resumo:
Reproductive division of labor and the coexistence of distinct castes are hallmarks of insect societies. In social insect species with multiple queens per colony, the fitness of nestmate queens directly depends on the process of caste allocation (i.e., the relative investment in queen, sterile worker and male production). The aim of this study is to investigate the genetic components to the process of caste allocation in a multiple-queen ant species. We conducted controlled crosses in the Argentine ant Linepithema humile and established single-queen colonies to identify maternal and paternal family effects on the relative production of new queens, workers, and males. There were significant effects of parental genetic backgrounds on various aspects of caste allocation: the paternal lineage affected the proportion of queens and workers produced whereas the proportions of queens and males, and females and males were influenced by the interaction between parental lineages. In addition to revealing nonadditive genetic effects on female caste determination in a multiple-queen ant species, this study reveals strong genetic compatibility effects between parental genomes on caste allocation components.
Resumo:
From the Tropic of Capricorn to Equator, the seasonality of domestic cat is known to be absent, i.e., these animals are considered non-seasonal breeders at these regions. We hypothesized that this particularity might have some influence on in vitro embryo production. The aim of this experiment was to determine the percentage of cleavage and morulae and blastocyst formation produced from oocytes recovered from queen ovaries of three distinct status - follicular, luteal or inactive - during two different reproductive seasons experienced by cats in southeast of Brazil (22°53'09" S and 48°26'42" W) - non breeding season (NBS), comprehending January to March; and breeding season (BS), August to October. Thirty queens were neutered. Ovaries were classified according to their status and were sliced in PBS for cumulus oocyte complex (COC) releasing. Grade I COC were washed three times in H-MEM supplemented with BSA, glutamine, sodium pyruvate, cysteine, streptomycin and penicillin. Oocytes were incubated in groups of 20-30 in 400µL of DMEM supplemented with FSH, LH, estradiol, IGF-I and basic fibroblast growth factor under mineral oil for 30 or 36 hours at 38°C in humidified environment of 5% de O2, 5% CO2 and 90% N2. COC were fertilized in Ham's F-10 medium supplemented with BSA, cysteine, pyruvate and streptomycin/penicillin (culture medium) with fresh semen selected through swim up technique. Eighteen hours later, the presumptive zygotes were denuded, the percentage of cleavage was determined and every 10 zygotes were transferred to 100mL drops of culture medium for culture during three days. After 72 hours of culture the percentage of morulae formation was evaluated and these structures were transferred to drops of the same culture medium. At the eighth day of culture blastocyst formation was analyzed. During NBS, from a total of 272 (inactive), 162 (luteal) and 134 (follicular) fertilized oocytes, the percentage of cleaved zygotes, morulae and blastocysts derived from inactive ovaries were 24.63, 16.54 and 8.09 respectively; for those derived from luteal ovaries, the percentage was 21.6, 12.96 and 8.64, and for those from follicular ovaries, they were 24.62, 16.41 and 8.21. Considering BS, from a total of 102 (inactive), 198 (luteal) and 86 (follicular) fertilized oocytes, the relative frequency (%) of cleaved zygotes, morulae and blastocysts derived from inactive ovaries were 64.7, 41.17 and 23.53 respectively; for those derived from luteal ovaries, the percentage was 64.14, 40.41 and 23.73, and for those from follicular ovaries, they were 63.95, 39.54 and 24.41. The results of this experiment demonstrate that no statistically significant difference (P<0.05) was verified in the frequency of cleaved embryos and morulae and blastocyst formation when comparing the three ovarian conditions in the same season. However the breeding season presented better results considering cleavage and morulae and blastocyst formation.