883 resultados para Quaternionic groups
Resumo:
We obtain an explicit cellular decomposition of the quaternionic spherical space forms, manifolds of positive constant curvature that are factors of an odd sphere by a free orthogonal action of a generalized quaternionic group. The cellular structure gives and explicit description of the associated cellular chain complex of modules over the integral group ring of the fundamental group. As an application we compute the Whitehead torsion of these spaces for any representation of the fundamental group. © 2012 Springer Science+Business Media B.V.
Resumo:
Let P be a principal S(3)-bundle over a sphere S(n), with n >= 4. Let G(p) be the gauge group of P. The homotopy type of G(p) when n - 4 was studied by A. Kono in [A. Kono, A note on the homotopy type of certain gauge groups, Proc. Roy. Soc. Edinburgh Sect. A 117 (1991) 295-297]. In this paper we extend his result anti we study the homotopy type of the gauge group of these bundles for all n <= 25. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The real-quaternionic indicator, also called the $\delta$ indicator, indicates if a self-conjugate representation is of real or quaternionic type. It is closely related to the Frobenius-Schur indicator, which we call the $\varepsilon$ indicator. The Frobenius-Schur indicator $\varepsilon(\pi)$ is known to be given by a particular value of the central character. We would like a similar result for the $\delta$ indicator. When $G$ is compact, $\delta(\pi)$ and $\varepsilon(\pi)$ coincide. In general, they are not necessarily the same. In this thesis, we will give a relation between the two indicators when $G$ is a real reductive algebraic group. This relation also leads to a formula for $\delta(\pi)$ in terms of the central character. For the second part, we consider the construction of the local Langlands correspondence of $GL(2,F)$ when $F$ is a non-Archimedean local field with odd residual characteristics. By re-examining the construction, we provide new proofs to some important properties of the correspondence. Namely, the construction is independent of the choice of additive character in the theta correspondence.
Resumo:
The main goal of this thesis is to understand and link together some of the early works by Michel Rumin and Pierre Julg. The work is centered around the so-called Rumin complex, which is a construction in subRiemannian geometry. A Carnot manifold is a manifold endowed with a horizontal distribution. If further a metric is given, one gets a subRiemannian manifold. Such data arise in different contexts, such as: - formulation of the second principle of thermodynamics; - optimal control; - propagation of singularities for sums of squares of vector fields; - real hypersurfaces in complex manifolds; - ideal boundaries of rank one symmetric spaces; - asymptotic geometry of nilpotent groups; - modelization of human vision. Differential forms on a Carnot manifold have weights, which produces a filtered complex. In view of applications to nilpotent groups, Rumin has defined a substitute for the de Rham complex, adapted to this filtration. The presence of a filtered complex also suggests the use of the formal machinery of spectral sequences in the study of cohomology. The goal was indeed to understand the link between Rumin's operator and the differentials which appear in the various spectral sequences we have worked with: - the weight spectral sequence; - a special spectral sequence introduced by Julg and called by him Forman's spectral sequence; - Forman's spectral sequence (which turns out to be unrelated to the previous one). We will see that in general Rumin's operator depends on choices. However, in some special cases, it does not because it has an alternative interpretation as a differential in a natural spectral sequence. After defining Carnot groups and analysing their main properties, we will introduce the concept of weights of forms which will produce a splitting on the exterior differential operator d. We shall see how the Rumin complex arises from this splitting and proceed to carry out the complete computations in some key examples. From the third chapter onwards we will focus on Julg's paper, describing his new filtration and its relationship with the weight spectral sequence. We will study the connection between the spectral sequences and Rumin's complex in the n-dimensional Heisenberg group and the 7-dimensional quaternionic Heisenberg group and then generalize the result to Carnot groups using the weight filtration. Finally, we shall explain why Julg required the independence of choices in some special Rumin operators, introducing the Szego map and describing its main properties.
Resumo:
This chapter is a condensation of a guide written by the chapter authors for both university teachers and students (Fowler et al., 2006). All page references given in this chapter are to this guide, unless otherwise stated. University students often work in groups. It may be a formal group (i.e. one that has been formed for a group presentation, writing a report, or completing a project) or an informal group (i.e. some students have decided to form a study group or undertake research together). Whether formal or informal, this chapter aims to make working in groups easier for you. Health care professionals also often work in groups. Yes, working in groups will extend well beyond your time at university. In fact, the skills and abilities to work effectively in groups are some of the most sought-after attributes in health care professionals. It seems obvious, then, that taking the opportunity to develop and enhance your skills and abilities for working in groups is a wise choice.
Resumo:
We examined differences in response latencies obtained during a validated video-based hazard perception driving test between three healthy, community-dwelling groups: 22 mid-aged (35-55 years), 34 young-old (65-74 years), and 23 old-old (75-84 years) current drivers, matched for gender, education level, and vocabulary. We found no significant difference in performance between mid-aged and young-old groups, but the old-old group was significantly slower than the other two groups. The differences between the old-old group and the other groups combined were independently mediated by useful field of view (UFOV), contrast sensitivity, and simple reaction time measures. Given that hazard perception latency has been linked with increased crash risk, these results are consistent with the idea that increased crash risk in older adults could be a function of poorer hazard perception, though this decline does not appear to manifest until age 75+ in healthy drivers.