997 resultados para Quartz sand


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The replacement of CH4 from its hydrate in quartz sand with 90:10, 70:30, and 50:50 (W-CO2:W-H2O) carbon dioxide-in-water (C/W) emulsions and liquid CO2 has been performed in a cell with size of empty set 36 x 200 mm. The above emulsions were formed in a new emulsifier, in which the temperature and pressure were 285.2 K and 30 MPa, respectively, and the emulsions were stable for 7-12 h. The results of replacing showed that 13.1-27.1%, 14.1-25.5%, and 14.6-24.3% of CH4 had been displaced from its hydrate with the above emulsions after 24-96 It of replacement, corresponding to about 1.5 times the CH4 replaced with high-pressure liquid CO2. The results also showed that the replacement rate of CH4 with the above emulsions and liquid CO2 decreased from 0.543, 0.587, 0.608, and 0.348 1/h to 0.083, 0.077, 0.069, and 0.063 1/h with the replacement time increased from 24 to 96 h. It has been indicated by this study that the use of CO2 emulsions is advantageous compared to the use of liquid CO2 in replacing CH4 from its hydrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediment drifts on the continental rise are located proximal to the western side of the Antarctic Peninsula and recorded changes in glacial volume and thermal regime over the last ca. 15 m.y. At Ocean Drilling Program (ODP) Site 1101 (Leg 178), which recovered sediments back to 3.1 Ma, glacial-interglacial cyclicity was identified based on the biogenic component and sedimentary structures observed in X-radiographs, magnetic susceptibility and lithofacies descriptions. Glacial intervals are dominated by fine-grained laminated mud and interglacial units consist of bioturbated muds enriched in biogenic components. From 2.2 to 0.76 Ma, planktonic foraminifera and calcareous nannofossils dominate in the interglacials suggesting a shift of the Antarctic Polar Front (APF) to the south near the drifts. Prior to 2.2 Ma, cyclicity cannot be identified and diatoms dominate the biogenic component and high percent opal suggests warmer conditions south of the APF and reduced sea ice over the drifts. Analyses of the coarse-grained terrigenous fraction (pebbles and coarse sand) from Sites 1096 and 1101 record glaciers at sea-level releasing iceberg-rafted debris (IRD) throughout the last 3.1 m.y. Analyses of quartz sand grains in IRD with the scanning electron microscope (SEM) show an abrupt change in the frequency of occurrence of microtextures at ~1.35 Ma. During the Late Pliocene to Early Pleistocene, the population of quartz grains included completely weathered grains and a low frequency of crushing and abrasion, suggesting that glaciers were small and did not inundate the topography. Debris shed from mountain peaks was transported supraglacially or englacially allowing weathered grains to pass through the glacier unmodified. During glacial periods from 1.35-0.76 Ma, glaciers expanded in size. The IRD flux was very high and dropstones have diverse lithologies. Conditions resembling those at the Last Glacial Maximum (LGM) have been episodically present on the Antarctic Peninsula since ~0.76 Ma. Quartz sand grains show high relief, fracture and abrasion common under thick ice and the IRD flux is low with a more restricted range of dropstone lithologies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This article describes an approach for quantifying microsphere deposition onto iron-oxide-coated sand under the influence of adsorbed Suwannee River Humic Acid (SRHA). The experimental technique involved a triple pulse injection of model latex microspheres (microspheres) in pulses of (1) microspheres, followed by (2) SRHA, and then (3) microspheres, into a column filled with iron-coated quartz sand as a water-saturated porous medium. A random sequential adsorption model (RSA) simulated the gradual rise in the first (microsphere) breakthrough curve (BTC). Using the same model calibration parameters a dramatic increase in concentration at the start of the second particle BTC, generated after SRHA injection, could be simulated by matching microsphere concentrations to extrapolated RSA output. RSA results and microsphere/SRHA recoveries showed that 1 mg of SRHA could block 5.90 plus or minus 0.14 x 10^9 microsphere deposition sites. This figure was consistent between experiments injecting different SRHA masses, despite contrasting microsphere deposition/release regimes generating the second microsphere BTC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Natural cycles of irradiation during burial and bleaching due to solar exposure during transport increase the Optically Stimulated Luminescence (OSL) sensitivity of quartz sand grains. The relationship between the OSL sensitivity and sediment transport allows to discriminate quartz sand grains with different depositional histories. In this paper, we evaluate the variation of OSL sensitivity in quartz grains deposited during the progradation of the Ilha Comprida barrier on the southern Brazilian, coast. Changes in sand sensitivity recorded by barrier growth since 6 ka ago are controlled by the variation in the proportion of low versus high sensitivity quartz grains. Low sensitivity grains with short sedimentary history are supplied by the Ribeira de Iguape River and reach the barrier through southward alongshore currents during fair weather conditions. Storm conditions shift the alongshore currents to northeast and permit the transport of high sensitivity grains with long sedimentary history from distal southern coastal sectors to the barrier. Therefore, the input of distal sediments for the Ilha Comprida barrier depends on the frequency and intensity of storms. Thus, the OSL sensitivity can be used as proxy for storm activity. The variation of OSL sensitivity through time indicates that the Ilha Comprida barrier changed from a relatively stable to an unstable storm pattern around 2 ka ago. Periods with increased storm activity peaked around AD 500, AD 1500 and AD 1850, approximately on the boundaries of the Medieval Climate Anomaly and the Little Ice Age. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The low solubility of iron (Fe) depresses plant growth in calcareous soils. In order to improve Fe availability, calcareous soils are treated with synthetic ligands, such as ethylenediaminetetraacetic acid (EDTA) and ethylenediimi-nobis(2-hydroxyphenyl)acetic acid (EDDHA). However, high expenses may hinder their use (EDDHA), and the recalcitrance of EDTA against biodegra-dation may increase the potential of cadmium (Cd) and lead (Pb) leaching. This study evaluated the ability of biodegradable ligands, i.e. different stereo-isomers of ethylenediaminedisuccinic acid (EDDS), to provide Fe for lettuce (Lactuca sativa L.) and ryegrass (Lolium perenne cv. Prego), their effects on uptake of other elements and solubility in soils and their subsequent effects on the activity of oxygen-scavenging enzymes in lettuce. Both EDTA and EDDHA were used as reference ligands. In unlimed and limed quartz sand both FeEDDS(S,S) and a mixture of stereo-isomers of FeEDDS (25% [S,S]-EDDS, 25% [R,R]-EDDS and 50% [S,R]/[R,S]-EDDS), FeEDDS(mix), were as efficient as FeEDTA and FeEDDHA in providing lettuce with Fe. However, in calcareous soils only FeEDDS(mix) was comparable to FeEDDHA when Fe was applied twice a week to mimic drip irrigation. The Fe deficiency increased the manganese (Mn) concentration in lettuce in both acidic and alkaline growth media, whereas Fe chelates depressed it. The same was observed with zinc (Zn) and copper (Cu) in acidic growth media. EDDHA probably affected the hormonal status of lettuce as well and thus depressed the uptake of Zn and Mn even more. The nutrient concentrations of ryegrass were only slightly affected by the Fe availability. After Fe chelate splitting in calcareous soils, EDDS and EDTA increased the solubility of Zn and Cu most, but only the Zn concentration was increased in lettuce. The availability of Fe increased the activity of oxygen-scavenging enzymes (ascorbate peroxidase, guaiacol peroxidase, catalase). The activity of Cu/ZnSOD (Cu/Zn superoxide dismutase) and MnSOD in lettuce leaves followed the concentrations of Zn and Mn. In acidic quartz sand low avail-ability of Fe increased the cobalt (Co) and nickel (Ni) concentrations in let-tuce, but Fe chelates decreased them. EDTA increased the solubility of Cd and Pb in calcareous soils, but not their uptake. The biodegradation of EDDS was not affected by the complexed element, and [S,S]-EDDS was biodegraded within 28 days in calcareous soils. EDDS(mix) was more recalcitrant, and after 56 days of incubation water-soluble elements (Fe, Mn, Zn, Cu, Co, Ni, Cd and Pb) corresponded to 10% of the added EDDS(mix) concentration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Five short bottom sediment cores taken in Wakulla Spring Wakulla County, Florida, were described lithologically and sampled for palynological study. Four of the cores were recoveredfrom sediments at the spring cave entrance (130 feet water depth). One core was taken in a fossil vertebrate bone bed, 280 feet distance into the main spring cave at a water depth of 240 feet. Sediments in the cores are composed of alternating intervals of quartz sand and calcilitite, containing freshwater diatoms, freshwater mollusk shells and plant remains. The predominant pollen present in all cores consists of a periporate variety typical of the herb families Chenopodiaceae and Amaranthaceae. Arboreal flora, typical of the area surrounding the spring today, represent a very low percentage of thle pollen assemblage in the cores. Clustered Chenopod-Amaranth type pollen observed in one core suggest minimal transport prior to deposition, and indicate that the bottom sediments in the cave may be essentially In situ. An absence of exotic flora suggests a Quaternary age for the sediments. (PDF contains 11 pages.)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The response of three commercial weld-hardfacing alloys to erosive wear has been studied. These were high chromium white cast irons, deposited by an open-arc welding process, widely used in the mineral processing and steelmaking industries for wear protection. Erosion tests were carried out with quartz sand, silicon carbide grit and blast furnace sinter of two different sizes, at a velocity of 40 m s-1 and at impact angles in the range 20° to 90°. A monolithic white cast iron and mild steel were also tested for comparison. Little differences were found in the wear rates when silica sand or silicon carbide grit was used as the erodent. Significant differences were found, however, in the rankings of the materials. Susceptibility to fracture of the carbide particles in the white cast irons played an important role in the behaviour of the white cast irons. Sinter particles were unable to cause gross fracture of the carbides and so those materials with a high volume fraction of carbides showed the greatest resistance to erosive wear. Silica and silicon carbide were capable of causing fracture of the primary carbides. Concentration of plastic strain in the matrix then led to a high wear rate for the matrix. At normal impact with silica or silicon carbide erodents mild steel showed a greater resistance to erosive wear than these alloys. © 1995.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated the solid particle flow characteristics and biomass gasification in a clapboard-type internal circulating fluidized bed reactor. The effect of fluidization velocity on particle circulation rate and pressure distribution in the bed showed that fluidization velocities in the high and low velocity zones were the main operational parameters controlling particle circulation. The maximum internal circulation rates in the low velocity zone came almost within the range of velocities in the high velocity zone, when uH/umf = 2.2-2.4 for rice husk and uH/umf = 3.5-4.5 for quartz sand. In the gasification experiment, the air equvalence ratio (ER) was the main controlling parameter. Rice husk gasification gas had a maximum heating value of around 5000 kJ/m3 when ER = 0.22-0.26, and sawdust gasification gas reached around 6000-6500 kJ/m3 when ER = 0.175-0.24. The gasification efficiency of rice husk reached a maximum of 77% at ER = 0.28, while the gasification efficiency of sawdust reached a maximum of 81% at ER = 0.25.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Permian reservoir in Sulige area of Ordos Basin, on which this paper focused, belongs to fluvial-delta lithofacies. The majority formations in this area are complicated channel sand deposit with serious inhomogeneity which makes natural gas exploration be very tough in this area. This inhomogeneity can be found everywhere both in large horizontal area and vertical profile of inner and interbedded formations.This paper studied the inhomogeneity characteristic of Permian formation in sulige area of Ordos Basin according to the logging data.Correlating with core data, a criterion to distinguish different type of reservoirs by using logging data is determined after the study of logging response is done considering the diverse conditions of deposit environments, lithology and reservoir space. The characteristic relationships between the various type formations and logging responses fully and systemically are established.It investigated reservoir parameter calculation methods amply. Combining the conventional and special logging data, basing on the feature of low porosity -permeability formation of sulige area, a set of methods to calculate reservoir parameters was formed including primary porosity, secondary porosity, fracture porosity, permeability and water saturation under the conditions of both low porosity-permeability and inhomogenous reservoirs. One thing should be pay close attention is the parameter M for calculating saturation. It is found that the M in low porosity -permeability formation decreases as the porosity decrease, which is opposite to the law that M increases as the porosity decrease in the formation with intermediate to high porosity and permeability. This view has innovated the traditional theory and offered theory basis for the logging interpretation of low porosity - permeability reservoir. Meanwhile it also improved the Arqi formula theoretically and enhanced the logging interpretation accuracy and rescued a number of formations which has been thought to be hopeless according to the old theory.By using advantage logging interpretation procedure, a territorial synthetic geology evaluation to the inhomogeneous reservoir was completed basing on the single well interpretation. All the reservoir evaluation parameters including sand formation thickness, primary porosity, secondary porosity were calculated and evaluated. The rules of changing and development for sand formation thickness, sand physical properties and secondary porous were found at different formations of upper part of the Member 8 of Shihezi, lower part of the Member 8 of Shihezi, the Member 1 of shanxi and the Member 2 of shanxi individually. Evaluation and Correlation of these five formations were also completed and one conclusion was arrived: upper part of the Member 8 of Shihezi formation has the best performance followed by the lower part of the Member 8 of Shihezi, the Member 1 of shanxi and the Member 2 of shanxi formation.After studied the relationship between reservoir deposition characteristic and the natural gas richness, it is regarded that reservoir inhomogeneity is the key issue of the impaction on the natural gas. Natural gas in Sulige gas field was mainly accumulated in sands of channel bar, distributary channel and debouchure bar. Especially, the quartz sand with rich of secondary porous space has obvious better physical properties than other reservoir and usually can forms the concentration of natural gas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three soil spots were found in Grove Mountains, east Antarctica during 1999-2000, when the Chinare 16th Antarctic expedition teams entered the inland Antarctica. The characteristics of soils in Grove Mountains are desert pavement coating the surface, abundant water soluble salt, negligible organ matter, and severe rubification and salinization, scarces of liquid water, partly with dry permafrost, corresponding with the soils of McMurdo, Transantarctic. The soils age of Grove Mountains is 0.5-3.5Ma. Podzolization and redoximorphism are the main features in coastal Wilks region, in addition, there is strong enrichment of organic matter in many soils of this region. The main soil processes of Fildes Peninsula of King George Island include the intense physical weathering, decalcification and weakly biochemical processes. Peat accumulation is the main processes in Arctic because of humid and cold environment.Based on synthesis of heavy minerals, particle size, quartz grain surface textures, as well as pollen in soils, the soils parent materials of Grove Mountains derived from alluvial sediment of the weathering bedrocks around soils, and formed during the warm period of Pliocene. The detailed information is followed .l)The results of heavy minerals particle size showed the parent minerals derived form the weathering bedrocks around soils. 2)The quartz sand surface textures include glacial crushing and abrasion such as abrasive conchoidal fractures and grain edges, abrasive subparallel linear fractures and angularity, subaqueous environments produce V-shaped and irregular impact pits, polished surface, and chemical textures, such as beehive solution pits, which showed the water is the main force during the sediment of the soil parent minerals. 3)The pollen consist of 40 plant species, of which at least 5 species including Ranunculaceae, Chenopodiaceae, Artemisia, Gramineae, Podocarpus belong to the Neogene vegetation except the species from the old continent. Compared with Neogene vegetation of Transantarctic Mountains, Antarctic, we concluded that they grow in warm Pliocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Humic acid and protein are two major organic matter types encountered in natural and polluted environment, respectively. This study employed Triple Pulse Experiments (TPEs) to investigate and compare the influence of Suwannee River Humic Acid (SRHA) (model humic acid) and Bovine Serum Albumin (BSA) (model protein) on colloid deposition in a column packed with saturated iron oxide-coated quartz sand. Study results suggest that adsorbed SRHA may inhibit colloid deposition by occupying colloid sites on the porous medium. Conversely, BSA may promote colloid deposition by a 'filter ripening' mechanism. This study provides insight to understand the complex behavior of colloids in organic matter-presented aquifers and sand filters. © (2012) Trans Tech Publications, Switzerland.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Land application of wastes from concentrated animal feeding operations results in accumulation of copper (Cu) and antimicrobials in terrestrial systems. Interaction between Cu and antimicrobials may change Cu speciation in soil solution, and affect Cu bioavailability and toxicity. In this study, earthworms were exposed to quartz sand percolated with different concentrations of Cu and ciprofloxacin (CIP). Copper uptake by earthworms, its subcellular partition, and toxicity were studied. An increase in the applied CIP decreased the free Cu ion concentration in external solution and mortalities of earthworm, while Cu contents in earthworms increased. Copper and CIP in earthworms were fractionated into five fractions: a granular fraction (D), a fraction consisting of tissue fragments, cell membranes, and intact cells (E), a microsomal fraction (F), a denatured proteins fraction (G), and a heat-stable proteins fraction (H). Most of the CIP in earthworms was in fraction H. Copper was redistributed from the metal-sensitive fraction E to fractions D, F, G, and H with increasing CIP concentration. These results challenge the free ion activity model and suggested that Cu may be partly taken up as Cu-CIP complexes in earthworms, changing the bioavailability, subcellular distribution, and toxicity of Cu to earthworms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A study has been conducted focusing on how the phosphorus renrx)val efficiency of a constructed wetland (CW) can be optimized through the selective enrichment of the substratum. Activated alumina and powdered iron were examined as possible enrichment compounds. Using packed glass column trials it was found that alumina was not suitable for the renx)val of ortho-phosphate from solution, while mixtures of powdered iron and quartz sand proved to be very efficient. The evaluation of iron/sand mixtures in CWs planted with cattails was performed in three stages; first using an indoor lab scale wetland, then an outdoor lab scale wetland, and finally in a small scale pilot project. For the lab scale tests, three basic configurations were evaluated: using the iron/sand as a pre-filter, in the root bed. and as a post filter. Primary lagoon effluent was applied to the test cells to simulate actual CW conditions, and the total phosphorus and iron concentrations of the influent and effluent were nfK)nitored. The pilot scale trials were limited to using only a post filter design, due to in-progress research at the pilot site. The lab scale tests achieved average renrK>val efficiencies greater than 91% for all indoor configurations, and greater than 97% for all outdoor configurations. The pilot scale tests had an average renK)val efficiency of 60%. This relatively low efficiency in the pilot scale can be attributed to the post filters being only one tenth the size of the lab scale test in terms of hydraulic loading (6 cm/day vs. 60 cm/day).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Five laboratory incubation experiments were carried out to assess the salinity-induced changes in the microbial use of sugarcane filter cake added to soil. The first laboratory experiment was carried out to prove the hypothesis that the lower content of fungal biomass in a saline soil reduces the decomposition of a complex organic substrate in comparison to a non-saline soil under acidic conditions. Three different rates (0.5, 1.0, and 2.0%) of sugarcane filter cake were added to both soils and incubated for 63 days at 30°C. In the saline control soil without amendment, cumulative CO2 production was 70% greater than in the corresponding non-saline control soil, but the formation of inorganic N did not differ between these two soils. However, nitrification was inhibited in the saline soil. The increase in cumulative CO2 production by adding filter cake was similar in both soils, corresponding to 29% of the filter cake C at all three addition rates. Also the increases in microbial biomass C and biomass N were linearly related to the amount of filter cake added, but this increase was slightly higher for both properties in the saline soil. In contrast to microbial biomass, the absolute increase in ergosterol content in the saline soil was on average only half that in the non-saline soil and it showed also strong temporal changes during the incubation: A strong initial increase after adding the filter cake was followed by a rapid decline. The addition of filter cake led to immobilisation of inorganic N in both soils. This immobilisation was not expected, because the total C-to-total N ratio of the filter cake was below 13 and the organic C-to-organic N ratio in the 0.5 M K2SO4 extract of this material was even lower at 9.2. The immobilisation was considerably higher in the saline soil than in the non-saline soil. The N immobilisation capacity of sugarcane filter cake should be considered when this material is applied to arable sites at high rations. The second incubation experiment was carried out to examine the N immobilizing effect of sugarcane filter cake (C/N ratio of 12.4) and to investigate whether mixing it with compost (C/N ratio of 10.5) has any synergistic effects on C and N mineralization after incorporation into the soil. Approximately 19% of the compost C added and 37% of the filter cake C were evolved as CO2, assuming that the amendments had no effects on the decomposition of soil organic C. However, only 28% of the added filter cake was lost according to the total C and d13C values. Filter cake and compost contained initially significant concentrations of inorganic N, which was nearly completely immobilized between day 7 and 14 of the incubation in most cases. After day 14, N re-mineralization occurred at an average rate of 0.73 µg N g-1 soil d-1 in most amendment treatments, paralleling the N mineralization rate of the non-amended control without significant difference. No significant net N mineralization from the amendment N occurred in any of the amendment treatments in comparison to the control. The addition of compost and filter cake resulted in a linear increase in microbial biomass C with increasing amounts of C added. This increase was not affected by differences in substrate quality, especially the three times larger content of K2SO4 extractable organic C in the sugarcane filter cake. In most amendment treatments, microbial biomass C and biomass N increased until the end of the incubation. No synergistic effects could be observed in the mixture treatments of compost and sugarcane filter cake. The third 42-day incubation experiment was conducted to answer the questions whether the decomposition of sugarcane filter cake also result in immobilization of nitrogen in a saline alkaline soil and whether the mixing of sugarcane filter cake with glucose (adjusted to a C/N ratio of 12.5 with (NH4)2SO4) change its decomposition. The relative percentage CO2 evolved increased from 35% of the added C in the pure 0.5% filter cake treatment to 41% in the 0.5% filter cake +0.25% glucose treatment to 48% in the 0.5% filter cake +0.5% glucose treatment. The three different amendment treatments led to immediate increases in microbial biomass C and biomass N within 6 h that persisted only in the pure filter cake treatment until the end of the incubation. The fungal cell-membrane component ergosterol showed initially an over-proportionate increase in relation to microbial biomass C that fully disappeared at the end of the incubation. The cellulase activity showed a 5-fold increase after filter cake addition, which was not further increased by the additional glucose amendment. The cellulase activity showed an exponential decline to values around 4% of the initial value in all treatments. The amount of inorganic N immobilized from day 0 to day 14 increased with increasing amount of C added in comparison to the control treatment. Since day 14, the immobilized N was re-mineralized at rates between 1.31 and 1.51 µg N g-1 soil d-1 in the amendment treatments and was thus more than doubled in comparison with the control treatment. This means that the re-mineralization rate is independent from the actual size of the microbial residues pool and also independent from the size of the soil microbial biomass. Other unknown soil properties seem to form a soil-specific gate for the release of inorganic N. The fourth incubation experiment was carried out with the objective of assessing the effects of salt additions containing different anions (Cl-, SO42-, HCO3-) on the microbial use of sugarcane filter cake and dhancha leaves amended to inoculated sterile quartz sand. In the subsequent fifth experiment, the objective was to assess the effects of inoculum and temperature on the decomposition of sugar cane filter cake. In the fourth experiment, sugarcane filter cake led to significantly lower respiration rates, lower contents of extractable C and N, and lower contents of microbial biomass C and N than dhancha leaves, but to a higher respiratory quotient RQ and to a higher content of the fungal biomarker ergosterol. The RQ was significantly increased after salt addition, when comparing the average of all salinity treatments with the control. Differences in anion composition had no clear effects on the RQ values. In experiment 2, the rise in temperature from 20 to 40°C increased the CO2 production rate by a factor of 1.6, the O2 consumption rate by a factor of 1.9 and the ergosterol content by 60%. In contrast, the contents of microbial biomass N decreased by 60% and the RQ by 13%. The effects of the inoculation with a saline soil were in most cases negative and did not indicate a better adaptation of these organisms to salinity. The general effects of anion composition on microbial biomass and activity indices were small and inconsistent. Only the fraction of 0.5 M K2SO4 extractable C and N in non-fumigated soil was consistently increased in the 1.2 M NaHCO3 treatment of both experiments. In contrast to the small salinity effects, the quality of the substrate has overwhelming effects on microbial biomass and activity indices, especially on the fungal part of the microbial community.