967 resultados para Quartz provenance


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The optically stimulated luminescence (OSL) sensitivity of quartz has a significant influence on luminescence dating procedures. Furthermore, identifying the natural controls of quartz OSL sensitivity is an important step towards new applications of OSL in geology such as provenance tracing. We evaluate the OSL sensitivity (total and the proportion of the informally assigned fast, medium and slow components) of single grains of quartz extracted from 10 different igneous and metamorphic rocks with known formation conditions; and from fluvial and coastal sediments with different sedimentary histories and known source rocks. This sample suite allows assessment of the variability of the OSL sensitivity of single quartz grains with respect to their primary origin and sedimentary history. We observed significant variability in the OSL sensitivity of grains within all studied rock and sediment samples, with the brightest grains of each sample being those dominated by the fast component. Quartz from rocks formed under high temperature (> 500 degrees C) conditions, such as rhyolites and metamorphic rocks from the amphibolite facies, display higher OSL sensitivity. The OSL sensitivity of fluvial sediments which have experienced only a short transport distance is relatively low. These sediments show a small increase in OSL sensitivity downstream, mainly due to a decreasing fraction of ""dim"" grains. The quartz grains from coastal sands present very high sensitivity and variability, which is consistent with their long sedimentary history. The high variability of the OSL sensitivity of quartz from coastal sands is attributed more to the mixture of grains with distinct sedimentary histories than to the provenance from many types of source rocks. The temperature of crystallization and the number of cycles of burial and solar exposure are suggested as the main natural factors controlling the OSL sensitivity of quartz grains. The increase in OSL sensitivity due to cycles of erosion and deposition surpasses the sensitivity inherited from the source rock, with this increase being mainly related to the sensitization of fast OSL components. The discrimination of grains with different sedimentary histories through their OSL sensitivities can allow the development of quantitative provenance methods based on quartz. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural cycles of irradiation during burial and bleaching due to solar exposure during transport increase the Optically Stimulated Luminescence (OSL) sensitivity of quartz sand grains. The relationship between the OSL sensitivity and sediment transport allows to discriminate quartz sand grains with different depositional histories. In this paper, we evaluate the variation of OSL sensitivity in quartz grains deposited during the progradation of the Ilha Comprida barrier on the southern Brazilian, coast. Changes in sand sensitivity recorded by barrier growth since 6 ka ago are controlled by the variation in the proportion of low versus high sensitivity quartz grains. Low sensitivity grains with short sedimentary history are supplied by the Ribeira de Iguape River and reach the barrier through southward alongshore currents during fair weather conditions. Storm conditions shift the alongshore currents to northeast and permit the transport of high sensitivity grains with long sedimentary history from distal southern coastal sectors to the barrier. Therefore, the input of distal sediments for the Ilha Comprida barrier depends on the frequency and intensity of storms. Thus, the OSL sensitivity can be used as proxy for storm activity. The variation of OSL sensitivity through time indicates that the Ilha Comprida barrier changed from a relatively stable to an unstable storm pattern around 2 ka ago. Periods with increased storm activity peaked around AD 500, AD 1500 and AD 1850, approximately on the boundaries of the Medieval Climate Anomaly and the Little Ice Age. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detrital zircon and igneous zircon U-Pb ages are reported from Proterozoic metamorphic rocks in northern New Mexico. These data give new insight into the provenance and depositional age of a >3-km-thick metasedimentary succession and help resolve the timing of orogenesis within an area of overlapping accretionary orogens and thermal events related to the Proterozoic tectonic evolution of southwest Laurentia. Three samples from the Paleoproterozoic Vadito Group yield narrow, unimodal detrital zircon age spectra with peak ages near 1710 Ma. Igneous rocks that intrude the Vadito Group include the Cerro Alto metadacite, the Picuris Pueblo granite, and the Penasco quartz monzonite and yield crystallization ages of 1710 +/- 10 Ma, 1699 +/- 3 Ma, and 1450 +/- 10 Ma, respectively. Within the overlying Hondo Group, a metamorphosed tuff layer from the Pilar Formation yields an age of 1488 +/- 6 Ma and represents the first direct depositional age constraint on any part of the Proterozoic metasedimentary succession in northern New Mexico. Detrital zircon from the overlying Piedra Lumbre Formation yield a minimum age peak of 1475 Ma, and similar to 60 grains (similar to 25%) yield ages between 1500 Ma and 1600 Ma, possibly representing non-Laurentian detritus originating from Australia and/or Antarctica. Detrital zircons from the basal metaconglomerate and the middle quartzite member of the Marquenas Formation yield minimum age peaks of 1472 Ma and 1471 Ma, consistent with earlier results. We interpret the onset of ca. 1490-1450 Ma deposition followed by tectonic burial, regional Al2SiO5 triple-point metamorphism, and ductile deformation at depths of 12-18 km to reflect a Mesoproterozoic contractional orogenic event, possibly related to the final suturing of the Mazatzal crustal province to the southern margin of Laurentia. We propose to call this event the Picuris orogeny.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Upper Paleocene–Eocene boulder conglomerate, cross-stratified sandstone, and laminated carbonaceous mudstone of the Arkose Ridge Formation exposed in the southern Talkeetna Mountains record fluvial-lacustrine deposition proximal to the volcanic arc in a forearc basin modified by Paleogene spreading ridge subduction beneath southern Alaska. U-Pb ages of detrital zircon grains and modal analyses were obtained from stratigraphic sections spanning the 2,000 m thick Arkose Ridge Formation in order to constrain the lithology, age, and location of sediment sources that provided detritus. Detrital modes from 24 conglomerate beds and 54 sandstone thin sections aredominated by plutonic and volcanic clasts and plagioclase feldspar with minor quartz, schist, hornblende, argillite, and metabasalt. Westernmost sandstone and conglomerate strata contain <5% volcanic clasts whereas easternmost sandstone and conglomerate strata contain 40 to >80% volcanic clasts. Temporally, eastern sandstones andconglomerates exhibit an upsection increase in volcanic detritus from <40 to >80% volcanic clasts. U-Pb ages from >1400 detrital zircons in 15 sandstone samples reveal three main populations: late Paleocene–Eocene (60-48 Ma; 16% of all grains), Late Cretaceous–early Paleocene (85–60 Ma; 62%) and Jurassic–Early Cretaceous (200–100 Ma; 12%). A plot of U/Th vs U-Pb ages shows that >97% of zircons are <200 Ma and>99% of zircons have <10 U/Th ratios, consistent with mainly igneous source terranes. Strata show increased enrichment in late Paleocene–Eocene detrital zircons from <2% in the west to >25% in the east. In eastern sections, this younger age population increases temporally from 0% in the lower 50 m of the section to >40% in samples collected >740 m above the base. Integration of the compositional and detrital geochronologic data suggests: (1) Detritus was eroded mainly from igneous sources exposed directly north of the Arkose Ridge Formation strata, mainly Jurassic–Paleocene plutons and Paleocene–Eocenevolcanic centers. Subordinate metamorphic detritus was eroded from western Mesozoic low-grade metamorphic sources. Subordinate sedimentary detritus was eroded from eastern Mesozoic sedimentary sources. (2) Eastern deposystems received higher proportions of juvenile volcanic detritus through time, consistent with construction of adjacent slab-window volcanic centers during Arkose Ridge Formation deposition. (3)Western deposystems transported detritus from Jurassic–Paleocene arc plutons that flank the northwestern basin margin. (4) Metasedimentary strata of the Chugach accretionaryprism, exposed 20-50 km south of the Arkose Ridge Formation, did not contribute abundant detritus. Conventional provenance models predict reduced input of volcanic detritus to forearc basins during exhumation of the volcanic edifice and increasing exposure ofsubvolcanic plutons (Dickinson, 1995; Ingersoll and Eastmond, 2007). In the forearc strata of these conventional models, sandstone modal analyses record progressive increases upsection in quartz and feldspar concomitant with decreases in lithic grains, mainly volcanic lithics. Additionally, as the arc massif denudes through time, theyoungest detrital U-Pb zircon age populations become significantly older than the age of forearc deposition as the arc migrates inboard or ceases magmatism. Westernmost strata of the Arkose Ridge Formation are consistent with this conventional model. However, easternmost strata of the Arkose Ridge Formation contain sandstone modes that record an upsection increase in lithic grains accompanied by a decrease in quartz and feldspar, and detrital zircon age populations that closely match the age of deposition. This deviation from the conventional model is due to the proximity of the easternmost strata to adjacent juvenile volcanic rocks emplaced by slab-window volcanic processes. Provenance data from the Arkose Ridge Formation show that forearc basins modified by spreading ridge subduction may record upsection increases in non-arc, syndepositional volcanic detritusdue to contemporaneous accumulation of thick volcanic sequences at slab-window volcanic centers. This change may occur locally at the same time that other regions of the forearc continue to receive increasing amounts of plutonic detritus as the remnant arc denudes, resulting in complex lateral variations in forearc basin petrofacies and chronofacies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Petrography, geochemical whole-rock composition, and chemical analyses of tourmaline were performed in order to determine the source areas of Lower Cretaceous Mora, El Castellar, and uppermost Camarillas Formation sandstones from the Iberian Chain, Spain. Sandstones were deposited in intraplate subbasins, which are bound by plutonic and volcanic rocks of Permian, Triassic, and Jurassic age, Paleozoic metamorphic rocks, and Triassic sedimentary rocks. Modal analyses together with petrographic and cathodoluminescence observations allowed us to define three quartz-feldspathic petrofacies and recognize diagenetic processes that modified the original framework composition. Results from average restored petrofacies are: Mora petrofacies = P/F >1 and Q(r)70 F(r)22 R(r)9; El Castellar petrofacies = P/F >1 and Q(r)57 F(r)25 R(r)18; and Camarillas petrofacies = P/F ∼ zero and Q(r)64 F(r)28 R(r)7 (P—plagioclase; F—feldspar; Q—quartz; R—rock fragments; r—restored composition). Trace-element and rare earth element abundances of whole-rock analyses discriminate well between the three petrofacies based on: (1) the Rb concentration, which is indicative of the K content and reflects the amount of K-feldspar modal abundance, and (2) the relative modal abundance of heavy minerals (tourmaline, zircon, titanite, and apatite), which is reproduced by the elements hosted in the observed heavy mineral assemblage (i.e., B and Li for tourmaline; Zr, Hf, and Ta for zircon; Ti, Ta, Nb, and their rare earth elements for titanite; and P, Y, and their rare earth elements for apatite). Tourmaline chemical composition for the three petrofacies ranges from Fe-tourmaline of granitic to Mg-tourmaline of metamorphic origin. The three defined petrofacies suggest a mixed provenance from plutonic and metamorphic source rocks. However, a progressively major influence of granitic source rocks was detected from the lowermost Mora petrofacies toward the uppermost Camarillas petrofacies. This provenance trend is consistent with the uplift and erosion of the Iberian Massif, which coincided with the development of the latest Berriasian synrift regional unconformity and affected all of the Iberian intraplate basins. The uplifting stage of Iberian Massif pluton caused a significant dilution of Paleozoic metamorphic source areas, which were dominant during the sedimentation of the lowermost Mora and El Castellar petrofacies. The association of petrographic data with whole-rock geochemical compositions and tourmaline chemical analysis has proved to be useful for determining source area characteristics, their predominance, and the evolution of source rock types during the deposition of quartz-feldspathic sandstones in intraplate basins. This approach ensures that provenance interpretation is consistent with the geological context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pebble-sized basaltic and glassy clasts were extracted from seamount-derived volcaniclastic debris flows and analyzed for various trace elements, including the rare earths, to determine their genetic relationships and provenance. All the clasts were originally derived from relatively shallow submarine lava flows prior to sedimentary reworking, and have undergone minor low-grade alteration. They are classified into three petrographic groups (A, B, and C) characterized by different phenocryst assemblages and variable abundances and ratios of incompatible elements. Group A (clast from Hole 585) is a hyaloclastite fragment which is olivine-normative and distinct from the other clasts, with incompatibleelement ratios characteristic of transitional or alkali basalts. Groups B and C (clasts from Hole 585A) are quartz-normative, variably plagioclase-clinopyroxene-olivine phyric tholeiites, all with essentially similar ratios of highly incompatible elements and patterns of enrichment in light rare earth elements (chrondrite-normalized). Variation within Groups B and C was governed by low-pressure fractionation of the observed phenocryst phases, whereas the most primitive compositions of each group may be related by variable partial melting of a common source. The clasts have intraplate chemical characteristics, although relative to oceanic hot-spot-related volcanics (e.g., Hawaiian tholeiites) they are marginally depleted in most incompatible elements. The source region was enriched in all incompatible elements, compared with a depleted mid-ocean-ridge basalt source.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interval between 488.2 and 513.7 m below seafloor at Deep Sea Drilling Project (DSDP) Site 615 is interpreted as a single carbonate gravity-flow deposit. The deposit has characteristics of both a debris flow and a high-density turbidity current. Comparison of the sedimentary constituents in 15 samples from this site with samples from 26 core tops from the upper West Florida continental slope and eastern Mississippi Fan shows many similarities. Shallow-water indicators, such as mollusk and echinoid fragments, occur in both suites of samples. The West Florida continental margin, therefore, is a potential provenance area. The Yucatan slope is also a possible source, but data from it are limited. The recognition of carbonate gravity-flow deposits intercalated within the Mississippi Fan refines our understanding of Pleistocene sedimentation within the Gulf basin. Deposition in the deep Gulf is dominated by the construction of the Mississippi Fan. However, this marine terrigenous depocenter is located between two large carbonate depocenters, the West Florida continental margin on the east and the Yucatan peninsula on the southwest. Periodically, the carbonate slope in these two regions fails, injecting carbonate gravity flows into the accreting terrigenous deep-sea fan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quartz Crystal Microbalance (QCM) was used to monitor the mass changes on a quartz crystal surface containing immobilized lectins that interacted with carbohydrates. The strategy for lectin immobilization was developed on the basis of a multilayer system composed of Au-cystamine-glutaraldehyde-lectin. Each step of the immobilization procedure was confirmed by FTIR analysis. The system was used to study the interactions of Concanavalin A (ConA) with maltose and Jacalin with Fetuin. The real-time binding of different concentrations of carbohydrate to the immobilized lectin was monitored by means of QCM measurements and the data obtained allowed for the construction of Langmuir isotherm curves. The association constants determined for the specific interactions analyzed here were (6.4 +/- 0.2) X 10(4) M-1 for Jacalin-Fetuin and (4.5 +/- 0.1) x 10(2) M-1 for ConA-maltose. These results indicate that the QCM constitutes a suitable method for the analysis of lectin-carbohydrate interactions, even when assaying low molecular mass ligands such as disaccharides. Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate the influence of surface treatments on microtensile bond strength of luting resin cements to fiber posts. Materials and Methods: Forty-two quartz fiber posts (Light Post, RTD) were divided into 7 groups (n = 6) according to the surface treatment. I and 11: experimental patented industrial treatment consisting of zirconium oxide coating and silanization (RTD); III: industrial treatment followed by adhesive application (XPBond, Dentsply Caulk); IV: adhesive (XPBond); V: adhesive (Prime&Bond NT, Dentsply Caulk); VI: silane (Calibra Silane, Dentsply Caulk); VII: no treatment. Adhesives were used in the self-curing mode. Two cements (Sealbond, RTD - group 1, and Calibra, Dentsply Caulk - groups 11 to VII) were applied on the posts to produce cylindrical specimens. Post/cement interfaces were evaluated under SEM. The surface of the industrially coated posts was examined using energy dispersive analysis by x-ray. Cylinders were cut to obtain microtensile sticks that were loaded in tension at a crosshead speed of 0.5 mm/min until failure. Statistical analysis was performed using Kruskal-Wallis analysis of variance followed by Dunn`s multiple range test for post-hoc comparisons (p < 0.05). Weibull analysis was also performed. Results: The post/cement bond strength was significantly higher on fiber posts treated industrially (I: 23.14 +/- 8.05 MPa; II: 21.56 +/- 7.07 MPa; III: 22.37 +/- 7.00 MPa) or treated with XPBond adhesive (IV: 21.03 +/- 5.34 MPa) when compared to Prime&Bond NT application (V: 14.05 +/- 5.06 MPa), silanization (VI: 6.31 +/- 4.60 MPa) or no treatment (VII: 4.62 +/- 4.31) of conventional fiber posts (p < 0.001). Conclusion: The experimental industrial surface treatment and the adhesive application enhanced fiber post to resin cement interfacial strength. Industrial pretreatment may simplify the clinical luting procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: A common complication during the restoration of severely destroyed teeth is the loss of coronal root dentine. The aim of this study was to evaluate the influence of different sealers on the bonding interface of weakened roots reinforced with resin and fiber posts. Methods: Sixty extracted maxillary canines were used. The crowns were removed, and the thickness of root dentine was reduced in the experimental (n = 40) and positive control (n = 10) groups. The specimens of experimental group were assigned to four subgroups (n = 10) according to the filling material: gutta-percha + Grossmann`s sealer, gutta-percha + AH Plus (Dentsply De Trey Gmbh, Konstanz, Germany), gutta-percha + Epiphany (Pentron Clinical Technologies, Wallingford, CT), and Resilon (Resilon Research LLC, Madison, CT) + Epiphany. In the negative control group (n = 10), canals were not filled. After post space preparation, the roots were restored with composite resin light-activated through a translucent fiber post. After 24 hours, specimens were transversally sectioned into 1-mm-thick slices. Push-out test and scanning electron microscopic (SEM) analyses of different regions were performed. Data from push-out test were analyzed by using Tukey post hoc multiple comparison tests. The percentage of failure type was calculated. Data from SEM analysis were compared by Friedman and Kruskal-Wallis tests (alpha = 0.05). Results: The mean bond strength was significantly higher in the negative control group as compared with the other groups (P < .05). In all groups, the most frequent type of failure was adhesive. Overall, apical and middle regions presented a lower density of resin tags than the coronal region (P < .05). Conclusions: The push-out bond strength was not affected by sealer or region. The canal region affected significantly the resin tag morphology and density at the bonding interface. (J Endod 2011;37:531-537)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polyphase evolution of the Serido Belt (NE-Brazil) includes D, crust formation at 2.3-2.1 Ga, D-2 thrust tectonics at 1.9 Ga and crustal reworking by D-3 strike-slip shear zones at 600 Ma. Microstructural investigations within mylonites associated with D-2 and D-3 events were used to constrain the tectono-thermal evolution of the belt. D-2 shear zones commenced at deeper crustal levels and high amphibolite facies conditions (600-650 degreesC) through grain boundary migration, subgrain rotation and operation of quartz Q-prism slip. Continued shearing and exhumation of the terrain forced the re-equilibration of high-T fabrics and the switching of slip systems from (c)-prism to positive and negative (a)-rhombs. During D-3, enhancement of ductility by dissipation of heat that came from syn-D-3 granites developed wide belts of amphibolite facies mylonites. Continued shearing, uplift and cooling of the region induced D-3 shear zones to act in ductile-brittle regimes, marked by fracturing and development of thinner belts of greenschist facies mylonites. During this event, switching from (a)-prism to a basal slip indicates a thermal path from 600 to 350 degreesC. Therefore, microstructures and quartz c-axis fabrics in polydeformed rocks from the Serido Belt preserve the record of two major events, which includes contrasting deformation mechanisms and thermal paths. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Informatik, Diss., 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The comparative response of three sorghum (E-57, TEY 101 and C- 102) and of three corn cultivars (HMD-7974, Centralmex and Piranão) to N, P and K applications was studied in a soil from Anhembi, SP, classifield as Distrophic quartz sand (AQd) was studied. Leaf analyses were made to assess the nutritional status of the two crops. Main conclusions were the following. 1. Sorghum yieldel more than corn; 2. Both sorghum and corn varieties showed different capacities to absorb N, P and K from the soil and to fertilizer application; 3. There was no response to K2O fertilization; 4. Only Piranão increased yield when suplemented with a mixture of micronutrientes; 5. Direct relationships between rates of N and P2O5 and yield and leaf content were found; 6. Direct relationships between rates of N and P2O5 and yield and leaf content were found; 7. The following leaf levels were considered to be adequate, respectively for sorghum and corn: N - 2,00 - 2,25%, 3,25 - 3,50%; P - 0,30 - 0,40, 0,45 - 0,50; K -2,00 - 2,50, 2,20 - 2,40%; Ca - 0,20 - 0,40, 0,44- 0,72% Mg - 0,25 - 0,40, 0,34 - 0,60%; S - 0,50 - 0,70, 0,72 -0,80; Cu - 7 - 10, 11 - 15%; Fe - 84 - 170, 98 - 125%; Mn - 58 - 72, 66 - 85%; Zn - 10 - 14, 18 - 22; critical levels, however, do very depending upon cultivar.