170 resultados para Quartets


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frequency upconversion (UC) processes involving energy transfer (ET) among Nd 3+ and Pr 3+ ions in a fluoroindate glass are reported. In a first experiment, the excitation of Pr 3+ [transition 3H 4→ 1D 2] and of Nd 3+ [transition 4I 9/2→( 2G 7/2+ 4G 5/2)] was achieved with a dye laser operating in the 575-590 nm range. In a second experiment, the Nd 3+ ions were excited with the second harmonic of a Nd: YAG laser at 532 nm. The ET processes leading to UC in both experiments were studied by monitoring the blue fluorescence decay at 480 nm due to the transition 3P 0→ 3H 4 in Pr 3+. In the more relevant UC process, quartets of ions (Nd-Nd-Pr-Pr) are excited due to absorption of three laser photons by two Nd 3+ ions which transfer their energy to two Pr 3+ ions. Each Pr 3+ ion promoted to the 3P 0 level decays to the ground state emitting one photon in the blue region. This conclusion was achieved investigating the dependence of the UC fluorescence intensity as a function of laser intensity, samples concentrations, and temporal behavior of the UC signal. Other UC processes involving nonisoionic groups of three ions are also reported. © 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The telomeric G-rich single-stranded DNA can adopt in vitro an intramolecular quadruplex structure, which has been shown to directly inhibit telomerase activity. The reactivation of this enzyme in immortalized and most cancer cells suggests that telomerase is a relevant target in oncology, and telomerase inhibitors have been proposed as new potential anticancer agents. In this paper, we describe ethidium derivatives that stabilize G-quadruplexes. These molecules were shown to increase the melting temperature of an intramolecular quadruplex structure, as shown by fluorescence and absorbance measurements, and to facilitate the formation of intermolecular quadruplex structures. In addition, these molecules may be used to reveal the formation of multi-stranded DNA structures by standard fluorescence imaging, and therefore become fluorescent probes of quadruplex structures. This recognition was associated with telomerase inhibition in vitro: these derivatives showed a potent anti-telomerase activity, with IC50 values of 18–100 nM in a standard TRAP assay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cover title.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Op.1, C minor.--Op.2, F minor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

G major, K.80.--D major, K.155.--G major, K.156.--C major, K.157.--F major, K.158.--B♭ major, K.159.--E♭ major, K.160.--F major, K.168.--A major, K.169.--C major, K.170.--E♭ major, K.171.--B♭ major, K.172.--D minor, K.173.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nineteenth-century Romantic era saw the development and expansion of many vocal and instrumental forms that had originated in the Classical era. In particular, the German lied and French mélodie matured as art forms, and they found a kind of equilibrium between piano and vocal lines. Similarly, the nineteenth-century piano quartet came into its own as a form of true chamber music in which all instruments participated equally in the texture. Composers such as Robert Schumann, Johannes Brahms, and Gabriel Fauré offer particularly successful examples of both art song and piano quartets that represent these genres at their highest level of artistic complexity. Their works have become the cornerstones of the modern collaborative pianist’s repertoire. My dissertation explored both the art songs and the piano quartets of these three composers and studied the different skills needed by a pianist performing both types of works. This project included the following art song cycles: Robert Schumann’s Dichterliebe, Gabriel Fauré’s Poème d’un Jour, and Johannes Brahms’ Zigeunerlieder. I also performed Schumann’s Piano Quartet in E-flat Major, Op. 47, Fauré’s Piano Quartet in C minor, Op. 15, and Brahms’ Piano Quartet in G minor, Op. 25. My collaborators included: Zachariah Matteson, violin and viola; Kristin Bakkegard, violin; Molly Jones, cello; Geoffrey Manyin, cello; Karl Mitze, viola; Emily Riggs, soprano, and Matthew Hill, tenor. This repertoire was presented over the course of three recitals on February 13, 2015, December 11, 2015, March 25, 2016 at the University of Maryland’s Gildenhorn Recital Hall. These recitals can be found in the Digital Repository at the University of Maryland (DRUM).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

G-quadruplexes are secondary structures present in DNA and RNA molecules, which are formed by stacking of G-quartets (i.e., interaction of four guanines (G-tracts) bounded by Hoogsteen hydrogen bonding). Human PAX9 intron 1 has a putative G-quadruplex-forming region located near exon 1, which is present in all known sequenced placental mammals. Using circular dichroism (CD) analysis and CD melting, we showed that these sequences are able to form highly stable quadruplex structures. Due to the proximity of the quadruplex structure to exon-intron boundary, we used a validated double-reporter splicing assay and qPCR to analyze its role on splicing efficiency. The human quadruplex was shown to have a key role on splicing efficiency of PAX9 intron 1, as a mutation that abolished quadruplex formation decreased dramatically the splicing efficiency of human PAX9 intron 1. The less stable, rat quadruplex had a less efficient splicing when compared to human sequences. Additionally, the treatment with 360A, a strong ligand that stabilizes quadruplex structures, further increased splicing efficiency of human PAX9 intron 1. Altogether, these results provide evidences that G-quadruplex structures are involved in splicing efficiency of PAX9 intron 1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The focus of the present work was on 10- to 12-year-old elementary school students’ conceptual learning outcomes in science in two specific inquiry-learning environments, laboratory and simulation. The main aim was to examine if it would be more beneficial to combine than contrast simulation and laboratory activities in science teaching. It was argued that the status quo where laboratories and simulations are seen as alternative or competing methods in science teaching is hardly an optimal solution to promote students’ learning and understanding in various science domains. It was hypothesized that it would make more sense and be more productive to combine laboratories and simulations. Several explanations and examples were provided to back up the hypothesis. In order to test whether learning with the combination of laboratory and simulation activities can result in better conceptual understanding in science than learning with laboratory or simulation activities alone, two experiments were conducted in the domain of electricity. In these experiments students constructed and studied electrical circuits in three different learning environments: laboratory (real circuits), simulation (virtual circuits), and simulation-laboratory combination (real and virtual circuits were used simultaneously). In order to measure and compare how these environments affected students’ conceptual understanding of circuits, a subject knowledge assessment questionnaire was administered before and after the experimentation. The results of the experiments were presented in four empirical studies. Three of the studies focused on learning outcomes between the conditions and one on learning processes. Study I analyzed learning outcomes from experiment I. The aim of the study was to investigate if it would be more beneficial to combine simulation and laboratory activities than to use them separately in teaching the concepts of simple electricity. Matched-trios were created based on the pre-test results of 66 elementary school students and divided randomly into a laboratory (real circuits), simulation (virtual circuits) and simulation-laboratory combination (real and virtual circuits simultaneously) conditions. In each condition students had 90 minutes to construct and study various circuits. The results showed that studying electrical circuits in the simulation–laboratory combination environment improved students’ conceptual understanding more than studying circuits in simulation and laboratory environments alone. Although there were no statistical differences between simulation and laboratory environments, the learning effect was more pronounced in the simulation condition where the students made clear progress during the intervention, whereas in the laboratory condition students’ conceptual understanding remained at an elementary level after the intervention. Study II analyzed learning outcomes from experiment II. The aim of the study was to investigate if and how learning outcomes in simulation and simulation-laboratory combination environments are mediated by implicit (only procedural guidance) and explicit (more structure and guidance for the discovery process) instruction in the context of simple DC circuits. Matched-quartets were created based on the pre-test results of 50 elementary school students and divided randomly into a simulation implicit (SI), simulation explicit (SE), combination implicit (CI) and combination explicit (CE) conditions. The results showed that when the students were working with the simulation alone, they were able to gain significantly greater amount of subject knowledge when they received metacognitive support (explicit instruction; SE) for the discovery process than when they received only procedural guidance (implicit instruction: SI). However, this additional scaffolding was not enough to reach the level of the students in the combination environment (CI and CE). A surprising finding in Study II was that instructional support had a different effect in the combination environment than in the simulation environment. In the combination environment explicit instruction (CE) did not seem to elicit much additional gain for students’ understanding of electric circuits compared to implicit instruction (CI). Instead, explicit instruction slowed down the inquiry process substantially in the combination environment. Study III analyzed from video data learning processes of those 50 students that participated in experiment II (cf. Study II above). The focus was on three specific learning processes: cognitive conflicts, self-explanations, and analogical encodings. The aim of the study was to find out possible explanations for the success of the combination condition in Experiments I and II. The video data provided clear evidence about the benefits of studying with the real and virtual circuits simultaneously (the combination conditions). Mostly the representations complemented each other, that is, one representation helped students to interpret and understand the outcomes they received from the other representation. However, there were also instances in which analogical encoding took place, that is, situations in which the slightly discrepant results between the representations ‘forced’ students to focus on those features that could be generalised across the two representations. No statistical differences were found in the amount of experienced cognitive conflicts and self-explanations between simulation and combination conditions, though in self-explanations there was a nascent trend in favour of the combination. There was also a clear tendency suggesting that explicit guidance increased the amount of self-explanations. Overall, the amount of cognitive conflicts and self-explanations was very low. The aim of the Study IV was twofold: the main aim was to provide an aggregated overview of the learning outcomes of experiments I and II; the secondary aim was to explore the relationship between the learning environments and students’ prior domain knowledge (low and high) in the experiments. Aggregated results of experiments I & II showed that on average, 91% of the students in the combination environment scored above the average of the laboratory environment, and 76% of them scored also above the average of the simulation environment. Seventy percent of the students in the simulation environment scored above the average of the laboratory environment. The results further showed that overall students seemed to benefit from combining simulations and laboratories regardless of their level of prior knowledge, that is, students with either low or high prior knowledge who studied circuits in the combination environment outperformed their counterparts who studied in the laboratory or simulation environment alone. The effect seemed to be slightly bigger among the students with low prior knowledge. However, more detailed inspection of the results showed that there were considerable differences between the experiments regarding how students with low and high prior knowledge benefitted from the combination: in Experiment I, especially students with low prior knowledge benefitted from the combination as compared to those students that used only the simulation, whereas in Experiment II, only students with high prior knowledge seemed to benefit from the combination relative to the simulation group. Regarding the differences between simulation and laboratory groups, the benefits of using a simulation seemed to be slightly higher among students with high prior knowledge. The results of the four empirical studies support the hypothesis concerning the benefits of using simulation along with laboratory activities to promote students’ conceptual understanding of electricity. It can be concluded that when teaching students about electricity, the students can gain better understanding when they have an opportunity to use the simulation and the real circuits in parallel than if they have only the real circuits or only a computer simulation available, even when the use of the simulation is supported with the explicit instruction. The outcomes of the empirical studies can be considered as the first unambiguous evidence on the (additional) benefits of combining laboratory and simulation activities in science education as compared to learning with laboratories and simulations alone.