992 resultados para Quark-meson coupling models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quark-meson-coupling model is used to study droplet formation from the liquid-gas phase transition in cold asymmetric nuclear matter. The critical density and proton fraction for the phase transition are determined in the mean field approximation. Droplet properties are calculated in the Thomas-Fermi approximation. The electromagnetic field is explicitly included and its effects on droplet properties are studied. The results are compared with the ones obtained with the NL1 parametrization of the non-linear Walecka model. © 2000 Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Charmed (and bottom) hypernuclei are studied in the quark-meson coupling (QMC) model. This completes systematic studies of charmed (Lambda(c)(+), Sigma(c), Xi(c)), and Lambda(b) hypernuclei in the QMC model. Effects of the Pauli blocking due to the underlying quark structure of baryons, and the Sigma(c)N-Lambda(c)N channel coupling are phenomenologically taken into account at the hadronic level in the same way as those included for strange hypernuclei. Our results suggest that the Sigma(c)(++) and Xi(c)(+) hypernuclei are very unlikely to be formed. while the Lambda(c)(+), Xi(c)(0) and Lambda(b) hypernuclei are quite likely to be formed. For the Sigma(c)(+) hypernuclei, the formation probability is non-zero, though small. A detailed analysis is also made about the phenomenologically introduced Pauli blocking and channel coupling effects for the Sigma(c)(0) hypernuclei.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this talk we report on recent progress in implementing exchange terms in the quark-meson coupling model. Exchange effects are related to the Pauli exclusion principle. We discuss exchange effects at the nucleon level and at the quark level. We also address the incorporation of chiral symmetry and Delta degrees of freedom in the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The binding energy of nuclear matter including exchange and pionic effects is calculated in a quark-meson coupling model with massive constituent quarks. As in the case with elementary nucleons in QHD, exchange effects are repulsive. However, the coupling of the mesons directly to the quarks in the nucleons introduces a new effect on the exchange energies that provides an extra repulsive contribution to the binding energy. Pionic effects are not small. Implications of such effects on observables are discussed. © 1998 Published by Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mean field description of nuclear matter in the quark-meson coupling model is improved by the inclusion of exchange contributions (Fock terms). The inclusion of Fock terms allows us to explore the momentum dependence of meson-nucleon vertices and the role of pionic degrees of freedom in matter. It is found that the Fock terms maintain the previous predictions of the model for the in-medium properties of the nucleon and for the nuclear incompressibility. The Fock terms significantly increase the absolute values of the single-particle, four-component scalar and vector potentials, a feature that is relevant for the spin-orbit splitting in finite nuclei. © 1999 Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We formulate a quark-meson coupling model for nuclear matter using light front variables. We present results for saturation properties of nuclear matter and in-medium nucleon properties. We also calculate the distribution function of the plus momentum carried by nucleons in nuclear matter. Our model predicts that vector mesons carry only 7% of the fraction per nucleon of the total plus momentum of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Excluded volume effects are incorporated in the quark-meson coupling model to take into account in a phenomenological way the hard-core repulsion of the nuclear force. The formalism employed is thermodynamically consistent and does not violate causality. The effects of the excluded volume on in-medium nucleon properties and the nuclear matter equation of state are investigated as a function of the size of the hard core. It is found that in-medium nucleon properties are not altered significantly by the excluded volume, even for large hard-core radii, and the equation of state becomes stiffer as the size of the hard core increases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We derive the equation of state of nuclear matter for the quark-meson coupling model taking into account quantum fluctuations of the σ meson as well as vacuum polarization effects for the nucleons. This model incorporates explicitly quark degrees of freedom with quarks coupled to the scalar and vector mesons. Quantum fluctuations lead to a softer equation of state for nuclear matter giving a lower value of incompressibility than would be reached without quantum effects. The in-medium nucleon and σ-meson masses are also calculated in a self-consistent manner. The spectral function of the σ meson is calculated and the σ mass has the value increased with respect to the purely classical approximation at high densities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we study the warm equation of state of asymmetric nuclear matter in the quark-meson coupling model which incorporates explicitly quark degrees of freedom, with quarks coupled to scalar, vector, and isovector mesons. Mechanical and chemical instabilities are discussed as a function of density and isospin asymmetry. The binodal section, essential in the study of the liquid-gas phase transition is also constructed and discussed. The main results for the equation of state are compared with two common parametrizations used in the nonlinear Walecka model and the differences are outlined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on recent estimates of the J/Ψ mass shift in infinite nuclear matter and finite nuclei arising from in-medium D and D* meson loops. The density dependence of the J/Ψ mass shift is evaluated employing medium-modified D and D* meson masses derived within the quark-meson coupling model. Using a local density approximation, J/Ψ-nuclear bound state energies are calculated for a range of nuclei. We predict that J/Ψ-nuclear bound states should be observed with a clear signal in experiments, provided the J/Ψ meson is produced in recoilless kinematics. © Published under licence by IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the (2 + 1) flavor Polyakov quark-meson model and study the effect of including fermion vacuum fluctuations on the thermodynamics and phase diagram. The resulting model predictions are compared to the recent QCD lattice simulations by the HotQCD and Wuppertal-Budapest collaborations. The variation of the thermodynamic quantities across the phase transition region becomes smoother. This results in better agreement with the lattice data. Depending on the value of the mass of the sigma meson, including the vacuum term results in either pushing the critical end point into higher values of the chemical potential or excluding the possibility of a critical end point altogether.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the (2 + 1) flavor Polyakov quark meson model and study the fluctuations (correlations) of conserved charges up to sixth (fourth) order. A comparison is made with lattice data wherever available and overall good qualitative agreement is found, more so for the case of the normalized susceptibilities. The model predictions for the ratio of susceptibilities go to that of an ideal gas of hadrons as in hadron resonance gas model at low temperatures while at high temperature the values are close to that of an ideal gas of massless quarks. Our study provides a strong basis for the use of the Polyakov quark meson model as an effective model to understand the topology of the QCD phase diagram. DOI: 10.1103/PhysRevD.86.114021 PACS numbers: 12.39.-x, 05.40.-a, 12.38.Aw, 12.38.Mh

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of nonlinear scalar field couplings on elastic proton-nucleus scattering observables are investigated using a relativistic impulse approximation. Nonlinear couplings affect in a nontrivial way the effective nucleon mass and the nuclear scalar and vector densities. Modifications on the densities might have observable consequences on scattering observables. Our investigation indicates that the description of the observables for the reactions p-O-16 and p-Ca-40 at 200 MeV are not greatly modified with the use of nonlinear models in comparison with the description using linear models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the effect of different forms of relativistic spin coupling of constituent quarks in the nucleon electromagnetic form factors. The four-dimensional integrations in the two-loop Feynman diagram are reduced to the null-plane, such that the light-front wave function is introduced in the computation of the form factors. The neutron charge form factor is very sensitive to different choices of spin coupling schemes, once its magnetic moment is fitted to the experimental value. The scalar coupling between two quarks is preferred by the neutron data, when a reasonable fit of the proton magnetic momentum is found. (C) 2000 Elsevier Science B.V.