975 resultados para Quark stars


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We review the stability of magnetized strange quark matter (MSQM) within the phenomenological MIT bag model, taking into account the variation of the relevant input parameters, namely, the strange quark mass, baryon density, magnetic field and bag parameter. A comparison with magnetized asymmetric quark matter in beta-equilibrium as well as with strange quark matter (SQM) is presented. We obtain that the energy per baryon for MSQM decreases as the magnetic field increases, and its minimum value at vanishing pressure is lower than the value found for SQM, which implies that MSQM is more stable than non-magnetized SQM. The mass-radius relation for magnetized strange quark stars is also obtained in this framework.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We construct and compare in this work a variety of simple models for strange stars, namely, hypothetical self-bound objects made of a cold stable version of the quark-gluon plasma. Exact, quasi-exact and numerical models are examined to find the most economical description for these objects. A simple and successful parametrization of them is given in terms of the central density, and the differences among the models are explicitly shown and discussed. In particular, we present a model starting with a Gaussian ansatz for the density profile that provides a very accurate and almost complete analytical integration of the problem, modulo a small difference for one of the metric potentials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The strange quark matter hypothesis is one of the most exciting speculations of the XX Century Physics. If this hypothesis is correct, the ground state of the matter would be the strange matter, which could form the core of compact objects like neutron stars or even more exotic objects like quarks stars. Due to the high-density and low-temperature regime in these stars, the interaction between quarks through gluon exchange could favor the appearance of a color superconducting state, significantl modifying the equation of state of the system. In this paper we present a general overview of this Subject, taking also into account the effect of strong magnetic field in the quark stars.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The exact physical conditions generating the abundances of r-elements in environments such as supernovae explosions are still under debate. We evaluated the characteristics expected for the neutrino wind in the proposed model of type-II supernova driven by conversion of nuclear matter to strange matter. Neutrinos will change the final abundance of elements after freeze out of r-process nucleosynthesis, specially those close to mass peaks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We find the first nonlinear correction to the field produced by a static charge at rest in a background constant magnetic field. It is quadratic in the charge and purely magnetic. The third-rank polarization tensor-the nonlinear response function-is written within the local approximation of the effective action in an otherwise model-and approximation-independent way within any P-invariant nonlinear electrodynamics, QED included. DOI: 10.1103/PhysRevD.86.125028

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The exact composition of a specific class of compact stars, historically referred to as ""neutron stars,'' is still quite unknown. Possibilities ranging from hadronic to quark degrees of freedom, including self-bound versions of the latter, have been proposed. We specifically address the suitability of strange star models (including pairing interactions) in this work, in the light of new measurements available for four compact stars. The analysis shows that these data might be explained by such an exotic equation of state, actually selecting a small window in parameter space, but still new precise measurements and also further theoretical developments are needed to settle the subject.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stability of the color flavor locked phase in the presence of a strong magnetic field is investigated within the phenomenological MIT bag model. It is found that the minimum value of the energy per baryon in a color flavor locked state at vanishing pressure is lower than the corresponding one for unpaired magnetized strange quark matter and, as the magnetic field increases, the energy per baryon decreases. This implies that magnetized color flavor locked matter is more stable and could become the ground state inside neutron stars. The anisotropy of the pressures is discussed. The mass-radius relation for such stars is also studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stability of the color flavor locked phase in the presence of a strong magnetic field is investigated within the phenomenological MIT bag model, taking into account the variation of the strange quark mass, the baryon density, the magnetic field, as well as the bag and gap parameters. It is found that the minimum value of the energy per baryon in a color flavor locked state at vanishing pressure is lower than the corresponding one for unpaired magnetized strange quark matter and, as the magnetic field increases, the energy per baryon decreases. This implies that magnetized colorflavor locked matter is more stable and could become the ground state inside neutron stars. The mass-radius relation for such stars is also studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We determine the structure of neutron stars within a Brueckner-Hartree-Fock approach based on realistic nucleon-nucleon, nucleon-hyperon, and hyperon-hyperon interactions. Our results indicate rather low maximum masses below 1.4 solar masses. This feature is insensitive to the nucleonic part of the EOS due to a strong compensation mechanism caused by the appearance of hyperons and represents thus strong evidence for the presence of nonbaryonic "quark" matter in the interior of heavy stars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We determine the structure of neutron stars within a Brueckner-Hartree-Fock approach based on realistic nucleon-nucleon, nucleon-hyperon, and hyperon-hyperon interactions. Our results indicate rather low maximum masses below 1.4 solar masses. This feature is insensitive to the nucleonic part of the EOS due to a strong compensation mechanism caused by the appearance of hyperons and represents thus strong evidence for the presence of nonbaryonic "quark" matter in the interior of heavy stars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primordial Quark Nuggets, remnants of the quark-hadron phase transition, may be hiding most of the baryon number in superdense chunks have been discussed for years always from the theoretical point of view. While they seemed originally fragile at intermediate cosmological temperatures, it became increasingly clear that they may survive due to a variety of effects affecting their evaporation (surface and volume) rates. A search of these objects have never been attempted to elucidate their existence. We discuss in this note how to search directly for cosmological fossil nuggets among the small asteroids approaching Earth. `Asteroids` with a high visible-to-infrared flux ratio, constant lightcurves and devoid of spectral features are signals of an actual possible nugget nature. A viable search of very definite primordial quark nugget features can be conducted as a spinoff of the ongoing/forthcoming NEAs observation programmes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chiral symmetry breaking at finite baryon density is usually discussed in the context of quark matter, i.e. a system of deconfined quarks. Many systems like stable nuclei and neutron stars however have quarks confined within nucleons. In this paper we construct a Fermi sea of three-quark nucleon clusters and investigate the change of the quark condensate as a function of baryon density. We study the effect of quark clustering on the in-medium quark condensate and compare results with the traditional approach of modeling hadronic matter in terms of a Fermi sea of deconfined quarks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used the statistical measurements of information entropy, disequilibrium and complexity to infer a hierarchy of equations of state for two types of compact stars from the broad class of neutron stars, namely, with hadronic composition and with strange quark composition. Our results show that, since order costs energy. Nature would favor the exotic strange stars even though the question of how to form the strange stars cannot be answered within this approach. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quark gluon plasma (QGP) at zero temperature and high baryon number is a system that may be present inside compact stars. It is quite possible that this cold QGP shares some relevant features with the hot QGP observed in heavy ion collisions, being also a strongly interacting system. In a previous work we have derived from the QCD Lagrangian an equation of state (EOS) for the cold QGP, which can be considered an improved version of the MIT bag-model EOS. Compared to the latter, our EOS reaches higher values of the pressure at comparable baryon densities. This feature is due to perturbative corrections and also to nonperturbative effects. Here we apply this EOS to the study of neutron stars, discussing the absolute stability of quark matter and computing the mass-radius relation for self-bound (strange) stars. The maximum masses of the sequences exceed two solar masses, in agreement with the recently measured values of the mass of the pulsar PSR J1614-2230, and the corresponding radii of around 10-11 km.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the solutions of the gap equations of the magnetic-color-flavor-locked (MCFL) phase of paired quark matter in a magnetic field, and taking into consideration the separation between the longitudinal and transverse pressures due to the field-induced breaking of the spatial rotational symmetry, the equation of state (EoS) of the MCFL phase is self-consistently determined. Implications for stellar models of magnetized (self-bound) strange stars and hybrid (MCFL core) stars are discussed.