972 resultados para Quark Masses and SM Parameters


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We perform an analysis of the electroweak precision observables in the Lee-Wick Standard Model. The most stringent restrictions come from the S and T parameters that receive important tree level and one loop contributions. In general the model predicts a large positive S and a negative T. To reproduce the electroweak data, if all the Lee-Wick masses are of the same order, the Lee-Wick scale is of order 5 TeV. We show that it is possible to find some regions in the parameter space with a fermionic state as light as 2.4-3.5 TeV, at the price of rising all the other masses to be larger than 5-8 TeV. To obtain a light Higgs with such heavy resonances a fine-tuning of order a few per cent, at least, is needed. We also propose a simple extension of the model including a fourth generation of Standard Model fermions with their Lee-Wick partners. We show that in this case it is possible to pass the electroweak constraints with Lee-Wick fermionic masses of order 0.4-1.5 TeV and Lee-Wick gauge masses of order 3 TeV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The consequences of adding random perturbations (anarchy) to a baseline hierarchical model of quark masses and mixings are explored. Even small perturbations of the order of 5% of the smallest non-zero element can already give deviations significantly affecting parameters of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, so any process generating the anarchy should in general be limited to this order of magnitude. The regularities of quark masses and mixings thus appear to be far from a generic feature of randomness in the mass matrices, and more likely indicate an underlying order. (C) 2001 Published by Elsevier B.V. B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a lattice QCD calculation of the up, down, strange and charm quark masses performed using the gauge configurations produced by the European Twisted Mass Collaboration with Nf=2+1+1 dynamical quarks, which include in the sea, besides two light mass degenerate quarks, also the strange and charm quarks with masses close to their physical values. The simulations are based on a unitary setup for the two light quarks and on a mixed action approach for the strange and charm quarks. The analysis uses data at three values of the lattice spacing and pion masses in the range 210–450 MeV, allowing for accurate continuum limit and controlled chiral extrapolation. The quark mass renormalization is carried out non-perturbatively using the RI′-MOM method. The results for the quark masses converted to the scheme are: mud(2 GeV)=3.70(17) MeV, ms(2 GeV)=99.6(4.3) MeV and mc(mc)=1.348(46) GeV. We obtain also the quark mass ratios ms/mud=26.66(32) and mc/ms=11.62(16). By studying the mass splitting between the neutral and charged kaons and using available lattice results for the electromagnetic contributions, we evaluate mu/md=0.470(56), leading to mu=2.36(24) MeV and md=5.03(26) MeV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Characteristics of the spatial structure of vertical synoptic currents were calculated from data of the density field surveys in order to estimate their influence on distribution of chlorophyll a concentration. Comparisons of chlorophyll concentration and vertical currents were implemented for two multidisciplinary surveys in the Black Sea carried out in summer, 1991 and in winter, 1994. The results showed qualitative and quantitative indications of coincidence of characteristics cited and, in particular, significant positive values of the correlation coefficient (0.65 for the summer survey and 0.83 for the winter one).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction Calculating segmental torso masses in Adolescent Idiopathic Scoliosis (AIS) patients allows the gravitational loading on the scoliotic spine during relaxed standing to be estimated. Methods Low dose CT data was used to calculate vertebral level-by-level torso masses and spinal joint torques for 20 female AIS patients (mean age 15.0 ± 2.7 years, mean Cobb angle 53 ± 7.1°). ImageJ software (v1.45 NIH USA) was used to threshold the T1 to L5 CT images and calculate the segmental torso volume and mass for each vertebral level. Masses for the head, neck and arms were taken from published data.1 Intervertebral joint torques in the coronal and sagittal planes at each vertebral level were found from the position of the centroid of the segment masses relative to the joint centres (assumed to be at the centre of the intervertebral disc). The joint torque at each level was found by summing torque contributions for all segments above that joint. Results Segmental torso mass increased from 0.6kg at T1 to 1.5kg at L5. The coronal plane joint torques due to gravity were 5-7Nm at the apex of the curve; sagittal torques were 3-5.4Nm. Conclusion CT scans were in the supine position and curve magnitudes are known to be smaller than those in standing.2 Hence, this study has shown that gravity produces joint torques potentially of higher than 7Nm in the coronal plane and 5Nm in the sagittal plane during relaxed standing in scoliosis patients. The magnitude of these torques may help to explain the mechanics of AIS progression and the mechanics of bracing. This new data on torso segmental mass in AIS patients will assist biomechanical models of scoliosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a search for new phenomena in a signature suppressed in the standard model of elementary particles (SM), we compare the inclusive production of events containing a lepton, a photon, significant transverse momentum imbalance (MET), and a jet identified as containing a b-quark, to SM predictions. The search uses data produced in proton-antiproton collisions at 1.96 TeV corresponding to 1.9 fb-1 of integrated luminosity taken with the CDF detector at the Fermilab Tevatron. We find 28 lepton+photon+MET+b events versus an expectation of 31.0+4.1/-3.5 events. If we further require events to contain at least three jets and large total transverse energy, simulations predict that the largest SM source is top-quark pair production with an additional radiated photon, ttbar+photon. In the data we observe 16 ttbar+photon candidate events versus an expectation from SM sources of 11.2+2.3/-2.1. Assuming the difference between the observed number and the predicted non-top-quark total is due to SM top quark production, we estimate the ttg cross section to be 0.15 +- 0.08 pb.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lepton masses and mixing angles via localization of 5-dimensional fields in the bulk are revisited in the context of Randall-Sundrum models. The Higgs is assumed to be localized on the IR brane. Three cases for neutrino masses are considered: (a) The higher-dimensional neutrino mass operator (LH.LH), (b) Dirac masses, and (c) Type I seesaw with bulk Majorana mass terms. Neutrino masses and mixing as well as charged lepton masses are fit in the first two cases using chi(2) minimization for the bulk mass parameters, while varying the O(1) Yukawa couplings between 0.1 and 4. Lepton flavor violation is studied for all the three cases. It is shown that large negative bulk mass parameters are required for the right-handed fields to fit the data in the LH.LH case. This case is characterized by a very large Kaluza-Klein (KK) spectrum and relatively weak flavor-violating constraints at leading order. The zero modes for the charged singlets are composite in this case, and their corresponding effective 4-dimensional Yukawa couplings to the KK modes could be large. For the Dirac case, good fits can be obtained for the bulk mass parameters, c(i), lying between 0 and 1. However, most of the ``best-fit regions'' are ruled out from flavor-violating constraints. In the bulk Majorana terms case, we have solved the profile equations numerically. We give example points for inverted hierarchy and normal hierarchy of neutrino masses. Lepton flavor violating rates are large for these points. We then discuss various minimal flavor violation schemes for Dirac and bulk Majorana cases. In the Dirac case with minimal-flavor-violation hypothesis, it is possible to simultaneously fit leptonic masses and mixing angles and alleviate lepton flavor violating constraints for KK modes with masses of around 3 TeV. Similar examples are also provided in the Majorana case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explore beyond-standard-model (BSM) physics signatures in the l + jets channel of the t (t) over bar pair production process at the Tevatron and the LHC. We study the effects of BSM physics scenarios on the top-quark polarization and on the kinematics of the decay leptons. To this end, we construct asymmetries using the lepton energy and angular distributions. Further, we find their correlations with the top polarization, net charge asymmetry and top forward-backward asymmetry. We show that when used together, these observables can help discriminate effectively between SM and different BSM scenarios, which can lead to varying degrees of top polarization at the Tevatron as well as the LHC. We use two types of colored mediator models to demonstrate the effectiveness of proposed observables, an s-channel axigluon and a u-channel diquark.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we are concerned with finding representations of the algebra of SU(3) vector and axial-vector charge densities at infinite momentum (the "current algebra") to describe the mesons, idealizing the real continua of multiparticle states as a series of discrete resonances of zero width. Such representations would describe the masses and quantum numbers of the mesons, the shapes of their Regge trajectories, their electromagnetic and weak form factors, and (approximately, through the PCAC hypothesis) pion emission or absorption amplitudes.

We assume that the mesons have internal degrees of freedom equivalent to being made of two quarks (one an antiquark) and look for models in which the mass is SU(3)-independent and the current is a sum of contributions from the individual quarks. Requiring that the current algebra, as well as conditions of relativistic invariance, be satisfied turns out to be very restrictive, and, in fact, no model has been found which satisfies all requirements and gives a reasonable mass spectrum. We show that using more general mass and current operators but keeping the same internal degrees of freedom will not make the problem any more solvable. In particular, in order for any two-quark solution to exist it must be possible to solve the "factorized SU(2) problem," in which the currents are isospin currents and are carried by only one of the component quarks (as in the K meson and its excited states).

In the free-quark model the currents at infinite momentum are found using a manifestly covariant formalism and are shown to satisfy the current algebra, but the mass spectrum is unrealistic. We then consider a pair of quarks bound by a potential, finding the current as a power series in 1/m where m is the quark mass. Here it is found impossible to satisfy the algebra and relativistic invariance with the type of potential tried, because the current contributions from the two quarks do not commute with each other to order 1/m3. However, it may be possible to solve the factorized SU(2) problem with this model.

The factorized problem can be solved exactly in the case where all mesons have the same mass, using a covariant formulation in terms of an internal Lorentz group. For a more realistic, nondegenerate mass there is difficulty in covariantly solving even the factorized problem; one model is described which almost works but appears to require particles of spacelike 4-momentum, which seem unphysical.

Although the search for a completely satisfactory model has been unsuccessful, the techniques used here might eventually reveal a working model. There is also a possibility of satisfying a weaker form of the current algebra with existing models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aqueous solutions of amphiphilic polymers usually comprise of inter- and intramolecular associations of hydrophobic groups often leading to a formation of a rheologically significant reversible network at low concentrations that can be identified using techniques such as static light scattering and rheometry. However, in most studies published till date comparing water soluble polymers with their respective amphiphilic derivatives, it has been very difficult to distinguish between the effects of molecular mass versus hydrophobic associations on hydrodynamic (intrinsic viscosity [g]) and thermodynamic parameters (second virial coefficient A2), owing to the differences between their degrees of polymerization. This study focuses on the dilute and semi-dilute solutions of hydroxyethyl cellulose (HEC) and its amphiphilic derivatives (hmHEC) of the same molecular mass, along with other samples having a different molecular mass using capillary viscometry, rheometry and static light scattering. The weight average molecular masses (MW) and their distributions for the nonassociative HEC were determined using size exclusion chromatography. Various empirical approaches developed by past authors to determine [g] from dilute solution viscometry data have been discussed. hmHEC with a sufficiently high degree of hydrophobic modification was found to be forming a rheologically significant network in dilute solutions at very low concentrations as opposed to the hmHEC with a much lower degree of hydrophobic modification which also enveloped the hydrophobic groups inside the supramolecular cluster as shown by their [g] and A2. The ratio A2MW/[g], which takes into account hydrodynamic as well as thermodynamic parameters, was observed to be less for associative polymers compared to that of the non-associative polymers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ground state masses and binding energies of the nucleon, lambda0, lambdac+ , lambdab0 are studied within a constituent quark QCD-inspired light-front model. The light-front Faddeev equations for the Qqq composite spin 1/2 baryons, are derived and solved numerically. The experimental data for the masses are qualitatively described by a flavor independent effective interaction.