262 resultados para Quarantine.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We learn from the past that invasive species have caused tremendous damage to native species and serious disruption to agricultural industries. It is crucial for us to prevent this in the future. The first step of this process is to identify correctly an invasive species from native ones. Current identification methods, relying on mainly 2D images, can result in low accuracy and be time consuming. Such methods provide little help to a quarantine officer who has time constraints to response when on duty. To deal with this problem, we propose new solutions using 3D virtual models of insects. We explain how working with insects in the 3D domain can be much better than the 2D domain. We also describe how to create true-color 3D models of insects using an image-based 3D reconstruction method. This method is ideal for quarantine control and inspection tasks that involve the verification of a physical specimen against known invasive species. Finally we show that these insect models provide valuable material for other applications such as research, education, arts and entertainment. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A molecular assay with enhanced specificity and sensitivity has been developed to assist in the surveillance of Karnal bunt, a quarantineable disease with a significant impact on international trade. The protocol involves the release of DNA from spores, PCR amplification to enrich Tilletia-specific templates from released DNA and a five-plex, real-time PCR assay to detect, identify and distinguish T. indica and other Tilletia species (T. walkeri, T. ehrhartae, T. horrida and a group comprising T. caries, T. laevis, T. contraversa, T. bromi and T. fusca) in wheat grains. This fluorescent molecular tool has a detection sensitivity of one spore and thus bypasses the germination step, which in the current protocol is required for confirmation when only a few spores have been found in grain samples. The assay contains five dual-labelled, species-specific probes and associated species-specific primer pairs in a PCR mix in one tube. The different amplification products are detected simultaneously by five different fluorescence spectra. This specific and sensitive assay with reduced labour and reagent requirements makes it an effective and economically sustainable tool to be used in a Karnal bunt surveillance program. This protocol will also be valuable for the identification of some contaminant Tilletia sp. in wheat grains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enhanced diagnostic platforms for Post Entry Quarantine (PEQ) and market access (Phase 1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Develop a new diagnostic platform for Post Entry Plant Quarantine to support the detection of Emergency Plant Pests in the Australian Grains and Nursery Industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The seeds of the majority of commercial crops must be grown for one generation in post-entry plant quarantine on arrival in Australia. Live plants and cuttings must also undergo quarantine screening on arrival, and spend a minimum of three months in quarantine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper describes the QC3 quarantine facility and supporting infrastructure which were purpose built for weed biological control at the Ecosciences Precinct. The quarantine is one of two new weed quarantine facilities in Australia and will service northern Australia. An account of the sharing philosophy between CSIRO and the Queensland Government and the necessity of working very closely with architects, project managers, builders and quarantine personnel is also given. This philosophy contributed to certification of the facility without any undue delays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

White nectarines (Prunus persica var. nucipersica) were fumigated with methyl bromide (MB) at a nominal treatment dose of 18 g m-3 at 18°C for 5 h and 30 min as a quarantine disinfestation treatment against Bactrocera tryoni, the Queensland fruit fly. Three large scale trials were conducted against each of the four immature lifestages, eggs and first, second and third instars. There were no survivors from the estimated 43,614 eggs, 41,873 first instars, 41,345 second instars and 33,549 third instars treated, thereby resulting in an efficacy of GROTERDAN99.99% mortality at the 95% confidence level for each lifestage. Of the 12 trials reported herein, the highest concentration of MB, sampled from the chamber headspace analysed by gas chromatography, was 18.7 g m-3. The maximum chamber temperature from 5 min readings was 19.7°C and the maximum fruit core temperature was 19.5°C. The treatment time for all trials was exactly 5.5 h. Thus the recommended treatment dose to disinfest nectarines from B. tryoni is 19.0 g m-3 MB at 20.0°C for 5.5 h. Fruit quality trials were conducted on white nectarines at three combinations of treatment parameters: 15 g m-3 MB at 19°C for 5.25 h; 18 g m-3 MB at 19°C for 5.5 h and 21 g m-3 MB at 19°C for 5.5 h. The fruit were stored at 0, 4 and 8 days at 4°C and 8 days at 4°C followed by 4 d at 22°C. They were then were assessed for skin colour, flesh colour, skin defects, flesh defects, fruit weight loss, flesh firmness, total soluble solids, titratable acidity and rots. There was no significant difference between untreated control and MB treated fruits in any of the parameters measured. Thus the treatments did not have adverse effects on fruit quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incursions of plant pests and diseases pose serious threats to food security, agricultural productivity and the natural environment. One of the challenges in confidently delimiting and eradicating incursions is how to choose from an arsenal of surveillance and quarantine approaches in order to best control multiple dispersal pathways. Anthropogenic spread (propagules carried on humans or transported on produce or equipment) can be controlled with quarantine measures, which in turn can vary in intensity. In contrast, environmental spread processes are more difficult to control, but often have a temporal signal (e.g. seasonality) which can introduce both challenges and opportunities for surveillance and control. This leads to complex decisions regarding when, where and how to search. Recent modelling investigations of surveillance performance have optimised the output of simulation models, and found that a risk-weighted randomised search can perform close to optimally. However, exactly how quarantine and surveillance strategies should change to reflect different dispersal modes remains largely unaddressed. Here we develop a spatial simulation model of a plant fungal-pathogen incursion into an agricultural region, and its subsequent surveillance and control. We include structural differences in dispersal via the interplay of biological, environmental and anthropogenic connectivity between host sites (farms). Our objective was to gain broad insights into the relative roles played by different spread modes in propagating an invasion, and how incorporating knowledge of these spread risks may improve approaches to quarantine restrictions and surveillance. We find that broad heuristic rules for quarantine restrictions fail to contain the pathogen due to residual connectivity between sites, but surveillance measures enable early detection and successfully lead to suppression of the pathogen in all farms. Alternative surveillance strategies attain similar levels of performance by incorporating environmental or anthropogenic dispersal risk in the prioritisation of sites. Our model provides the basis to develop essential insights into the effectiveness of different surveillance and quarantine decisions for fungal pathogen control. Parameterised for authentic settings it will aid our understanding of how the extent and resolution of interventions should suitably reflect the spatial structure of dispersal processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A range of physiological parameters (canopy light transmission, canopy shape, leaf size, flowering and flushing intensity) were measured from the International Clone Trial, typically over the course of two years. Data were collected from six locations, these being: Brazil, Ecuador, Trinidad, Venezuela, Côte d’Ivoire and Ghana. Canopy shape varied significantly between clones, although it showed little variation between locations. Genotypic variation in leaf size was differentially affected by the growth location; such differences appeared to underlie a genotype by environment interaction in relation to canopy light transmission. Flushing data were recorded at monthly intervals over the course of a year. Within each location, a significant interaction was observed between genotype and time of year, suggesting that some genotypes respond to a greater extent than others to environmental stimuli. A similar interaction was observed for flowering data, where significant correlations were found between flowering intensity and temperature in Brazil and flowering intensity and rainfall in Côte d’Ivoire. The results demonstrate the need for local evaluation of cocoa clones and also suggest that the management practices for particular planting material may need to be fine-tuned to the location in which they are cultivated.