997 resultados para Quantum Gate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the possibility of implementing a universal quantum XOR gate by using two coupled quantum dots subject to external magnetic fields that are parallel and slightly different. We consider this system in two different field configurations. In the first case, parallel external fields with the intensity difference at each spin being proportional to the time-dependent interaction between the spins. A general exact solution describing this system is presented and analyzed to adjust field parameters. Then we consider parallel fields with intensity difference at each spin being constant and the interaction between the spins switching on and off adiabatically. In both cases we adjust characteristics of the external fields (their intensities and duration) in order to have the parallel pulse adequate for constructing the XOR gate. In order to provide a complete theoretical description of all the cases, we derive relations between the spin interaction, the inter-dot distance, and the external field. (C) 2008 WILEYNCH Verlag GmbH & Co. KGaA. Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe an approach for characterizing the process performed by a quantum gate using quantum process tomography, by first modeling the gate in an extended Hilbert space, which includes nonqubit degrees of freedom. To prevent unphysical processes from being predicted, present quantum process tomography procedures incorporate mathematical constraints, which make no assumptions as to the actual physical nature of the system being described. By contrast, the procedure presented here assumes a particular class of physical processes, and enforces physicality by fitting the data to this model. This allows quantum process tomography to be performed using a smaller experimental data set, and produces parameters with a direct physical interpretation. The approach is demonstrated by example of mode matching in an all-optical controlled-NOT gate. The techniques described are general and could be applied to other optical circuits or quantum computing architectures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the use of nanocrystal quantum dots as a quantum bus element for preparing various quantum resources for use in photonic quantum technologies. Using the Stark-tuning property of nanocrystal quantum dots as well as the biexciton transition, we demonstrate a photonic controlled-NOT (CNOT) interaction between two logical photonic qubits comprising two cavity field modes each. We find the CNOT interaction to be a robust generator of photonic Bell states, even with relatively large biexciton losses. These results are discussed in light of the current state of the art of both microcavity fabrication and recent advances in nanocrystal quantum dot technology. Overall, we find that such a scheme should be feasible in the near future with appropriate refinements to both nanocrystal fabrication technology and microcavity design. Such a gate could serve as an active element in photonic-based quantum technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Successful implementation of fault-tolerant quantum computation on a system of qubits places severe demands on the hardware used to control the many-qubit state. It is known that an accuracy threshold Pa exists for any quantum gate that is to be used for such a computation to be able to continue for an unlimited number of steps. Specifically, the error probability Pe for such a gate must fall below the accuracy threshold: Pe < Pa. Estimates of Pa vary widely, though Pa ∼ 10−4 has emerged as a challenging target for hardware designers. I present a theoretical framework based on neighboring optimal control that takes as input a good quantum gate and returns a new gate with better performance. I illustrate this approach by applying it to a universal set of quantum gates produced using non-adiabatic rapid passage. Performance improvements are substantial comparing to the original (unimproved) gates, both for ideal and non-ideal controls. Under suitable conditions detailed below, all gate error probabilities fall by 1 to 4 orders of magnitude below the target threshold of 10−4. After applying the neighboring optimal control theory to improve the performance of quantum gates in a universal set, I further apply the general control theory in a two-step procedure for fault-tolerant logical state preparation, and I illustrate this procedure by preparing a logical Bell state fault-tolerantly. The two-step preparation procedure is as follow: Step 1 provides a one-shot procedure using neighboring optimal control theory to prepare a physical qubit state which is a high-fidelity approximation to the Bell state |β01⟩ = 1/√2(|01⟩ + |10⟩). I show that for ideal (non-ideal) control, an approximate |β01⟩ state could be prepared with error probability ϵ ∼ 10−6 (10−5) with one-shot local operations. Step 2 then takes a block of p pairs of physical qubits, each prepared in |β01⟩ state using Step 1, and fault-tolerantly prepares the logical Bell state for the C4 quantum error detection code.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A simplified yet analytical approach on few ballistic properties of III-V quantum wire transistor has been presented by considering the band non-parabolicity of the electrons in accordance with Kane's energy band model using the Bohr-Sommerfeld's technique. The confinement of the electrons in the vertical and lateral directions are modeled by an infinite triangular and square well potentials respectively, giving rise to a two dimensional electron confinement. It has been shown that the quantum gate capacitance, the drain currents and the channel conductance in such systems are oscillatory functions of the applied gate and drain voltages at the strong inversion regime. The formation of subbands due to the electrical and structural quantization leads to the discreetness in the characteristics of such 1D ballistic transistors. A comparison has also been sought out between the self-consistent solution of the Poisson's-Schrodinger's equations using numerical techniques and analytical results using Bohr-Sommerfeld's method. The results as derived in this paper for all the energy band models gets simplified to the well known results under certain limiting conditions which forms the mathematical compatibility of our generalized theoretical formalism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two kinds of quantum computation systems using artificial molecules: quantum computer and quantum analog computer are described. The artificial molecule consists of two or three coupled quantum dots stacked along z direction and one single electron, In quantum computer, one-qubit and two-qubit gates are constructed by one molecule and two molecules, respectively. The coupling between two qubits in a quantum gate can be controlled by thin film electrodes. We also constructed a quantum analog computer by designing a three-dot molecule network and mapping a graph 3-colorability problem onto the network. The ground-state configuration of the single electrons in the network corresponds to one of the problem solutions, We numerically study the operations of the two kinds of the quantum computers and demonstrate that they quantum gates can perform the quantum computation and solve complex problems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

For any q > 1, let MOD_q be a quantum gate that determines if the number of 1's in the input is divisible by q. We show that for any q,t > 1, MOD_q is equivalent to MOD_t (up to constant depth). Based on the case q=2, Moore has shown that quantum analogs of AC^(0), ACC[q], and ACC, denoted QAC^(0)_wf, QACC[2], QACC respectively, define the same class of operators, leaving q > 2 as an open question. Our result resolves this question, implying that QAC^(0)_wf = QACC[q] = QACC for all q. We also prove the first upper bounds for QACC in terms of related language classes. We define classes of languages EQACC, NQACC (both for arbitrary complex amplitudes) and BQACC (for rational number amplitudes) and show that they are all contained in TC^(0). To do this, we show that a TC^(0) circuit can keep track of the amplitudes of the state resulting from the application of a QACC operator using a constant width polynomial size tensor sum. In order to accomplish this, we also show that TC^(0) can perform iterated addition and multiplication in certain field extensions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We define several quantitative measures of the robustness of a quantum gate against noise. Exact analytic expressions for the robustness against depolarizing noise are obtained for all bipartite unitary quantum gates, and it is found that the controlled-NOT gate is the most robust two-qubit quantum gate, in the sense that it is the quantum gate which can tolerate the most depolarizing noise and still generate entanglement. Our results enable us to place several analytic upper bounds on the value of the threshold for quantum computation, with the best bound in the most pessimistic error model being p(th)less than or equal to0.5.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We propose an approach to optical quantum computation in which a deterministic entangling quantum gate may be performed using, on average, a few hundred coherently interacting optical elements (beam splitters, phase shifters, single photon sources, and photodetectors with feedforward). This scheme combines ideas from the optical quantum computing proposal of Knill, Laflamme, and Milburn [Nature (London) 409, 46 (2001)], and the abstract cluster-state model of quantum computation proposed by Raussendorf and Briegel [Phys. Rev. Lett. 86, 5188 (2001)].

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recently, there have been several suggestions that weak Kerr nonlinearity can be used for generation of macroscopic superpositions and entanglement and for linear optics quantum computation. However, it is not immediately clear that this approach can overcome decoherence effects. Our numerical study shows that nonlinearity of weak strength could be useful for macroscopic entanglement generation and quantum gate operations in the presence of decoherence. We suggest specific values for real experiments based on our analysis. Our discussion shows that the generation of macroscopic entanglement using this approach is within the reach of current technology.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We prove upper and lower bounds relating the quantum gate complexity of a unitary operation, U, to the optimal control cost associated to the synthesis of U. These bounds apply for any optimal control problem, and can be used to show that the quantum gate complexity is essentially equivalent to the optimal control cost for a wide range of problems, including time-optimal control and finding minimal distances on certain Riemannian, sub-Riemannian, and Finslerian manifolds. These results generalize the results of [Nielsen, Dowling, Gu, and Doherty, Science 311, 1133 (2006)], which showed that the gate complexity can be related to distances on a Riemannian manifold.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

International audience

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The behavior of trapped electrons, in a dielectric close to the channel of a silicon SOI-FET, is studied by cryogenic microwave spectroscopy. On-resonance microwave excitation causes one of these trapped electrons to undergo spatial Rabi oscillations between widely separated trap sites. This charge displacement causes a change in the drain current of the transistor, resulting in high quality factor resonances in continuous wave spectroscopy. The potential of this effect for non-classical information processing is investigated through polychromatic single-shot spectroscopy, using on-resonance and difference frequencies. Interaction between different trapped electrons is seen in the post excitation behavior and the possibilities of quantum gate operations are discussed. © The Electrochemical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show that optimizing a quantum gate for an open quantum system requires the time evolution of only three states irrespective of the dimension of Hilbert space. This represents a significant reduction in computational resources compared to the complete basis of Liouville space that is commonly believed necessary for this task. The reduction is based on two observations: the target is not a general dynamical map but a unitary operation; and the time evolution of two properly chosen states is sufficient to distinguish any two unitaries. We illustrate gate optimization employing a reduced set of states for a controlled phasegate with trapped atoms as qubit carriers and a iSWAP gate with superconducting qubits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)