996 resultados para Quantum Dynamics
Resumo:
The calculation of quantum dynamics is currently a central issue in theoretical physics, with diverse applications ranging from ultracold atomic Bose-Einstein condensates to condensed matter, biology, and even astrophysics. Here we demonstrate a conceptually simple method of determining the regime of validity of stochastic simulations of unitary quantum dynamics by employing a time-reversal test. We apply this test to a simulation of the evolution of a quantum anharmonic oscillator with up to 6.022×1023 (Avogadro's number) of particles. This system is realizable as a Bose-Einstein condensate in an optical lattice, for which the time-reversal procedure could be implemented experimentally.
Resumo:
The simplest model of three coupled Bose-Einstein condensates is investigated using a group theoretical method. The stationary solutions are determined using the SU(3) group under the mean-field approximation. This semiclassical analysis, using system symmetries, shows a transition in the dynamics of the system from self trapping to delocalization at a critical value for the coupling between the condensates. The global dynamics are investigated by examination of the stable points, and our analysis shows that the structure of the stable points depends on the ratio of the condensate coupling to the particle-particle interaction, and undergoes bifurcations as this ratio is varied. This semiclassical model is compared to a full quantum treatment, which also displays a dynamical transition. The quantum case has collapse and revival sequences superimposed on the semiclassical dynamics, reflecting the underlying discreteness of the spectrum. Nonzero circular current states are also demonstrated as one of the higher-dimensional effects displayed in this system.
Resumo:
We consider the quantum dynamics of a neutral atom Bose-Einstein condensate in a double-well potential, including many-body hard-sphere interactions. Using a mean-field factorization we show that the coherent oscillations due to tunneling are suppressed when the number of atoms exceeds a critical value. An exact quantum solution, in a two-mode approximation, shows that the mean-field solution is modulated by a quantum collapse and revival sequence.
Resumo:
Quantum dynamics simulations can be improved using novel quasiprobability distributions based on non-orthogonal Hermitian kernel operators. This introduces arbitrary functions (gauges) into the stochastic equations. which can be used to tailor them for improved calculations. A possible application to full quantum dynamic simulations of BEC's is presented. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We study the quantum dynamics of the emission of multimodal polarized light in light emitting devices (LED) due to spin polarized carriers injection. We present the equations for photon number and carrier numbers, and calculate the polarisation degree of the light generated by LED. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We investigate the difference between classical and quantum dynamics of coupled magnetic dipoles. We prove that in general the dynamics of the classical interaction Hamiltonian differs from the corresponding quantum model, regardless of the initial state. The difference appears as nonpositive-definite diffusion terms in the quantum evolution equation of an appropriate positive phase-space probability density. Thus, it is not possible to express the dynamics in terms of a convolution of a positive transition probability function and the initial condition as can be done in the classical case. It is this feature that enables the quantum system to evolve to an entangled state. We conclude that the dynamics are a quantum element of nuclear magnetic resonance quantum-information processing. There are two limits where our quantum evolution coincides with the classical one: the short-time limit before spin-spin interaction sets in and the long-time limit when phase diffusion is incorporated.
Resumo:
El procedimiento de revertir la dinámica colectiva (diablillo de Loschmidt apresurado) mediante un pulso de radio frecuencia, permite generar un Eco de Loschmidt, es decir la refocalización de una excitación localizada. Alternativamente, en acústica es posible implementar un Espejo de Reversión Temporal, que consiste en la progresiva inyección de una débil excitación ultrasónica en la periferia de un sistema, para construir una excitación que se propaga "hacia atrás". Así, podemos afirmar que es posible revertir y controlar la dinámica. Sin embargo, aún no se posee una comprensión detallada de los mecanismos que gobiernan estos procedimientos. Este proyecto busca responder las preguntas que posibilitan esta comprensión.
Resumo:
A new practical method to generate a subspace of active coordinates for quantum dynamics calculations is presented. These reduced coordinates are obtained as the normal modes of an analytical quadratic representation of the energy difference between excited and ground states within the complete active space self-consistent field method. At the Franck-Condon point, the largest negative eigenvalues of this Hessian correspond to the photoactive modes: those that reduce the energy difference and lead to the conical intersection; eigenvalues close to 0 correspond to bath modes, while modes with large positive eigenvalues are photoinactive vibrations, which increase the energy difference. The efficacy of quantum dynamics run in the subspace of the photoactive modes is illustrated with the photochemistry of benzene, where theoretical simulations are designed to assist optimal control experiments
Resumo:
It is found that crystals of molecular nanomagnets exhibit enhanced magnetic relaxation when placed inside a resonant cavity. A strong dependence of the magnetization curve on the geometry of the cavity has been observed, providing indirect evidence of the coherent microwave radiation by the crystals. A similar dependence has been found for a crystal placed between the Fabry-Perot superconducting mirrors.
Resumo:
Kvanttimekaniikan teoriassa suljettuja, ympäristöstään eristettyjä systeemejä koskevat tulokset ovat hyvin tunnettuja. Eräs tärkeä erityispiirre tällaisille systeemeille on, että niiden aikakehitys on unitaarista. Oletus siitä, että systeemi on suljettu, on osaltaan tietysti vain yksinkertaistus. Käytännössä kaikki kvanttimekaaniset systeemit vuorovaikuttavat ympäristönsä kanssa ja tästä johtuen niiden dynamiikka monimutkaistuu oleellisesti. Kuitenkin tietyissä tapauksissa systeemin aikakehitys voidaan ratkaista, ainakin approksimatiivisesti. Tärkeimpinä esimerkkeinä on ympäristön joko nopea tai erittäin hidas muutos kvanttisysteemin ominaiseen aikaskaalaan verrattuna. Näistä erityisesti jälkimmäinen on käyttökelpoinen oletus monissa fysikaalisissa tilanteissa. Tällöin voidaan suorittaa niin sanottu adiabaattinen approksimaatio. Sen mukaan systeemi, joka on aikakehityksen generoivan Hamiltonin operaattorin ominaistilassa, pysyy vastaavassa ominaistilassa ympäristön muuttuessa äärettömän hitaasti, mikäli systeemin eri energiatasot eivät leikkaa toisiaan. Todellisissa tilanteissa muutos ei tietenkään voi olla äärettömän hidasta ja myös energiatasojen leikkaukset ovat mahdollisia, jolloin tapahtuu transitio eri ominaistilojen välillä. Energiatasojen leikkauksilla on oleellisia vaikutuksia erittäin monissa fysikaalisissa prosesseissa ja niitä kuvaamaan on luotu monia malleja kvanttimekaniikan alkuajoista lähtien aina tähän päivään saakka. Nykyinen teknologinen kehitys on avannut uudenlaisen mahdollisuuden ilmiön kokeelliseen varmentamiseen ja hyödyntämiseen. Tämän vuoksi kyseisten mallien dynamiikan ja erityisesti energiatasojen useiden peräkkäisten leikkausten aiheuttamien koherenssi-ilmiöiden selvittäminen on tärkeää. Tässä työssä käsitellään kvanttimekaanisia kaksitasosysteemejä, joissa esiintyy energiatasojen leikkauksia sekä niiden pitkän aikavälin dynamiikkaa. Tutkielmassa perehdytään tarkemmin kahteen tiettyyn malliin. Näistä ensimmäinen, Landau-Zener -malli, on tunnetuin ja sovelluksissa käytetyin malli. Kuitenkin erityisen mielenkiinnon kohteena on niin kutsuttu parabolinen malli, jolle johdetaan eri approksimaatioita käyttäen asymptoottiset transitiotodennäköisyydet eri tilojen välille. Näitä verrataan numeerisiin tuloksiin.
Resumo:
It is found that crystals of molecular nanomagnets exhibit enhanced magnetic relaxation when placed inside a resonant cavity. A strong dependence of the magnetization curve on the geometry of the cavity has been observed, providing indirect evidence of the coherent microwave radiation by the crystals. A similar dependence has been found for a crystal placed between the Fabry-Perot superconducting mirrors.
Resumo:
A new practical method to generate a subspace of active coordinates for quantum dynamics calculations is presented. These reduced coordinates are obtained as the normal modes of an analytical quadratic representation of the energy difference between excited and ground states within the complete active space self-consistent field method. At the Franck-Condon point, the largest negative eigenvalues of this Hessian correspond to the photoactive modes: those that reduce the energy difference and lead to the conical intersection; eigenvalues close to 0 correspond to bath modes, while modes with large positive eigenvalues are photoinactive vibrations, which increase the energy difference. The efficacy of quantum dynamics run in the subspace of the photoactive modes is illustrated with the photochemistry of benzene, where theoretical simulations are designed to assist optimal control experiments
Resumo:
In the first part of the thesis, we propose an exactly-solvable one-dimensional model for fermions with long-range p-wave pairing decaying with distance as a power law. We studied the phase diagram by analyzing the critical lines, the decay of correlation functions and the scaling of the von Neumann entropy with the system size. We found two gapped regimes, where correlation functions decay (i) exponentially at short range and algebraically at long range, (ii) purely algebraically. In the latter the entanglement entropy is found to diverge logarithmically. Most interestingly, along the critical lines, long-range pairing breaks also the conformal symmetry. This can be detected via the dynamics of entanglement following a quench. In the second part of the thesis we studied the evolution in time of the entanglement entropy for the Ising model in a transverse field varying linearly in time with different velocities. We found different regimes: an adiabatic one (small velocities) when the system evolves according the instantaneous ground state; a sudden quench (large velocities) when the system is essentially frozen to its initial state; and an intermediate one, where the entropy starts growing linearly but then displays oscillations (also as a function of the velocity). Finally, we discussed the Kibble-Zurek mechanism for the transition between the paramagnetic and the ordered phase.
Resumo:
How useful is a quantum dynamical operation for quantum information processing? Motivated by this question, we investigate several strength measures quantifying the resources intrinsic to a quantum operation. We develop a general theory of such strength measures, based on axiomatic considerations independent of state-based resources. The power of this theory is demonstrated with applications to quantum communication complexity, quantum computational complexity, and entanglement generation by unitary operations.