999 resultados para Quantum Computer
Resumo:
In this paper, we apply the canonical decomposition of two-qubit unitaries to find pulse schemes to control the proposed Kane quantum computer. We explicitly find pulse sequences for the controlled-NOT, swap, square root of swap, and controlled Z rotations. We analyze the speed and fidelity of these gates, both of which compare favorably to existing schemes. The pulse sequences presented in this paper are theoretically faster, with higher fidelity, and simpler. Any two-qubit gate may be easily found and implemented using similar pulse sequences. Numerical simulation is used to verify the accuracy of each pulse scheme.
Resumo:
We calculate the electron exchange coupling for a phosphorus donor pair in silicon perturbed by a J-gate potential and the boundary effects of the silicon host geometry. In addition to the electron-electron exchange interaction we also calculate the contact hyperfine interaction between the donor nucleus and electron as a function of the varying experimental conditions. Donor separation, depth of the P nuclei below the silicon oxide layer and J-gate voltage become decisive factors in determining the strength of both the exchange coupling and hyperfine interaction-both crucial components for qubit operations in the Kane quantum computer. These calculations were performed using an anisotropic effective-mass Hamiltonian approach. The behaviour of the donor exchange coupling as a function of the parameters varied in this work provides relevant information for the experimental design of these devices.
Resumo:
In this paper we investigate the effect of dephasing on proposed quantum gates for the solid-state Kane quantum computing architecture. Using a simple model of the decoherence, we find that the typical error in a controlled-NOT gate is 8.3x10(-5). We also compute the fidelities of Z, X, swap, and controlled Z operations under a variety of dephasing rates. We show that these numerical results are comparable with the error threshold required for fault tolerant quantum computation.
Resumo:
A numerical method is introduced to determine the nuclear magnetic resonance frequency of a donor (P-31) doped inside a silicon substrate under the influence of an applied electric field. This phosphorus donor has been suggested for operation as a qubit for the realization of a solid-state scalable quantum computer. The operation of the qubit is achieved by a combination of the rotation of the phosphorus nuclear spin through a globally applied magnetic field and the selection of the phosphorus nucleus through a locally applied electric field. To realize the selection function, it is required to know the relationship between the applied electric field and the change of the nuclear magnetic resonance frequency of phosphorus. In this study, based on the wave functions obtained by the effective-mass theory, we introduce an empirical correction factor to the wave functions at the donor nucleus. Using the corrected wave functions, we formulate a first-order perturbation theory for the perturbed system under the influence of an electric field. In order to calculate the potential distributions inside the silicon and the silicon dioxide layers due to the applied electric field, we use the multilayered Green's functions and solve an integral equation by the moment method. This enables us to consider more realistic, arbitrary shape, and three-dimensional qubit structures. With the calculation of the potential distributions, we have investigated the effects of the thicknesses of silicon and silicon dioxide layers, the relative position of the donor, and the applied electric field on the nuclear magnetic resonance frequency of the donor.
Resumo:
There are some interesting connections between the theory of quantum computation and quantum measurement. As an illustration, we present a scheme in which an ion trap quantum computer can be used to make arbitrarily accurate measurements of the quadrature phase variables for the collective vibrational motion of the ion. We also discuss some more general aspects of quantum computation and measurement in terms of the Feynman-Deutsch principle.
Resumo:
The main problem with current approaches to quantum computing is the difficulty of establishing and maintaining entanglement. A Topological Quantum Computer (TQC) aims to overcome this by using different physical processes that are topological in nature and which are less susceptible to disturbance by the environment. In a (2+1)-dimensional system, pseudoparticles called anyons have statistics that fall somewhere between bosons and fermions. The exchange of two anyons, an effect called braiding from knot theory, can occur in two different ways. The quantum states corresponding to the two elementary braids constitute a two-state system allowing the definition of a computational basis. Quantum gates can be built up from patterns of braids and for quantum computing it is essential that the operator describing the braiding-the R-matrix-be described by a unitary operator. The physics of anyonic systems is governed by quantum groups, in particular the quasi-triangular Hopf algebras obtained from finite groups by the application of the Drinfeld quantum double construction. Their representation theory has been described in detail by Gould and Tsohantjis, and in this review article we relate the work of Gould to TQC schemes, particularly that of Kauffman.
Resumo:
Recently, several groups have investigated quantum analogues of random walk algorithms, both on a line and on a circle. It has been found that the quantum versions have markedly different features to the classical versions. Namely, the variance on the line, and the mixing time on the circle increase quadratically faster in the quantum versions as compared to the classical versions. Here, we propose a scheme to implement the quantum random walk on a line and on a circle in an ion trap quantum computer. With current ion trap technology, the number of steps that could be experimentally implemented will be relatively small. However, we show how the enhanced features of these walks could be observed experimentally. In the limit of strong decoherence, the quantum random walk tends to the classical random walk. By measuring the degree to which the walk remains quantum, '' this algorithm could serve as an important benchmarking protocol for ion trap quantum computers.
Resumo:
We introduce a model of computation based on read only memory (ROM), which allows us to compare the space-efficiency of reversible, error-free classical computation with reversible, error-free quantum computation. We show that a ROM-based quantum computer with one writable qubit is universal, whilst two writable bits are required for a universal classical ROM-based computer. We also comment on the time-efficiency advantages of quantum computation within this model.
Resumo:
We are currently at the cusp of a revolution in quantum technology that relies not just on the passive use of quantum effects, but on their active control. At the forefront of this revolution is the implementation of a quantum computer. Encoding information in quantum states as “qubits” allows to use entanglement and quantum superposition to perform calculations that are infeasible on classical computers. The fundamental challenge in the realization of quantum computers is to avoid decoherence – the loss of quantum properties – due to unwanted interaction with the environment. This thesis addresses the problem of implementing entangling two-qubit quantum gates that are robust with respect to both decoherence and classical noise. It covers three aspects: the use of efficient numerical tools for the simulation and optimal control of open and closed quantum systems, the role of advanced optimization functionals in facilitating robustness, and the application of these techniques to two of the leading implementations of quantum computation, trapped atoms and superconducting circuits. After a review of the theoretical and numerical foundations, the central part of the thesis starts with the idea of using ensemble optimization to achieve robustness with respect to both classical fluctuations in the system parameters, and decoherence. For the example of a controlled phasegate implemented with trapped Rydberg atoms, this approach is demonstrated to yield a gate that is at least one order of magnitude more robust than the best known analytic scheme. Moreover this robustness is maintained even for gate durations significantly shorter than those obtained in the analytic scheme. Superconducting circuits are a particularly promising architecture for the implementation of a quantum computer. Their flexibility is demonstrated by performing optimizations for both diagonal and non-diagonal quantum gates. In order to achieve robustness with respect to decoherence, it is essential to implement quantum gates in the shortest possible amount of time. This may be facilitated by using an optimization functional that targets an arbitrary perfect entangler, based on a geometric theory of two-qubit gates. For the example of superconducting qubits, it is shown that this approach leads to significantly shorter gate durations, higher fidelities, and faster convergence than the optimization towards specific two-qubit gates. Performing optimization in Liouville space in order to properly take into account decoherence poses significant numerical challenges, as the dimension scales quadratically compared to Hilbert space. However, it can be shown that for a unitary target, the optimization only requires propagation of at most three states, instead of a full basis of Liouville space. Both for the example of trapped Rydberg atoms, and for superconducting qubits, the successful optimization of quantum gates is demonstrated, at a significantly reduced numerical cost than was previously thought possible. Together, the results of this thesis point towards a comprehensive framework for the optimization of robust quantum gates, paving the way for the future realization of quantum computers.
Resumo:
Optimal control theory is a powerful tool for solving control problems in quantum mechanics, ranging from the control of chemical reactions to the implementation of gates in a quantum computer. Gradient-based optimization methods are able to find high fidelity controls, but require considerable numerical effort and often yield highly complex solutions. We propose here to employ a two-stage optimization scheme to significantly speed up convergence and achieve simpler controls. The control is initially parametrized using only a few free parameters, such that optimization in this pruned search space can be performed with a simplex method. The result, considered now simply as an arbitrary function on a time grid, is the starting point for further optimization with a gradient-based method that can quickly converge to high fidelities. We illustrate the success of this hybrid technique by optimizing a geometric phase gate for two superconducting transmon qubits coupled with a shared transmission line resonator, showing that a combination of Nelder-Mead simplex and Krotov’s method yields considerably better results than either one of the two methods alone.
Resumo:
The aim of this thesis is to investigate the nature of quantum computation and the question of the quantum speed-up over classical computation by comparing two different quantum computational frameworks, the traditional quantum circuit model and the cluster-state quantum computer. After an introductory survey of the theoretical and epistemological questions concerning quantum computation, the first part of this thesis provides a presentation of cluster-state computation suitable for a philosophical audience. In spite of the computational equivalence between the two frameworks, their differences can be considered as structural. Entanglement is shown to play a fundamental role in both quantum circuits and cluster-state computers; this supports, from a new perspective, the argument that entanglement can reasonably explain the quantum speed-up over classical computation. However, quantum circuits and cluster-state computers diverge with regard to one of the explanations of quantum computation that actually accords a central role to entanglement, i.e. the Everett interpretation. It is argued that, while cluster-state quantum computation does not show an Everettian failure in accounting for the computational processes, it threatens that interpretation of being not-explanatory. This analysis presented here should be integrated in a more general work in order to include also further frameworks of quantum computation, e.g. topological quantum computation. However, what is revealed by this work is that the speed-up question does not capture all that is at stake: both quantum circuits and cluster-state computers achieve the speed-up, but the challenges that they posit go besides that specific question. Then, the existence of alternative equivalent quantum computational models suggests that the ultimate question should be moved from the speed-up to a sort of “representation theorem” for quantum computation, to be meant as the general goal of identifying the physical features underlying these alternative frameworks that allow for labelling those frameworks as “quantum computation”.
Resumo:
The scaling of decoherence rates with qubit number N is studied for a simple model of a quantum computer in the situation where N is large. The two state qubits are localized around well-separated positions via trapping potentials and vibrational centre of mass motion of the qubits occurs. Coherent one and two qubit gating processes are controlled by external classical fields and facilitated by a cavity mode ancilla. Decoherence due to qubit coupling to a bath of spontaneous modes, cavity decay modes and to the vibrational modes is treated. A non-Markovian treatment of the short time behaviour of the fidelity is presented, and expressions for the characteristic decoherence time scales obtained for the case where the qubit/cavity mode ancilla is in a pure state and the baths are in thermal states. Specific results are given for the case where the cavity mode is in the vacuum state and gating processes are absent and the qubits are in (a) the Hadamard state (b) the GHZ state.
Resumo:
What resources are universal for quantum computation? In the standard model of a quantum computer, a computation consists of a sequence of unitary gates acting coherently on the qubits making up the computer. This requirement for coherent unitary dynamical operations is widely believed to be the critical element of quantum computation. Here we show that a very different model involving only projective measurements and quantum memory is also universal for quantum computation. In particular, no coherent unitary dynamics are involved in the computation. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
We review progress at the Australian Centre for Quantum Computer Technology towards the fabrication and demonstration of spin qubits and charge qubits based on phosphorus donor atoms embedded in intrinsic silicon. Fabrication is being pursued via two complementary pathways: a 'top-down' approach for near-term production of few-qubit demonstration devices and a 'bottom-up' approach for large-scale qubit arrays with sub-nanometre precision. The 'top-down' approach employs a low-energy (keV) ion beam to implant the phosphorus atoms. Single-atom control during implantation is achieved by monitoring on-chip detector electrodes, integrated within the device structure. In contrast, the 'bottom-up' approach uses scanning tunnelling microscope lithography and epitaxial silicon overgrowth to construct devices at an atomic scale. In both cases, surface electrodes control the qubit using voltage pulses, and dual single-electron transistors operating near the quantum limit provide fast read-out with spurious-signal rejection.