937 resultados para Quantitative structure-activity relationship


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to extend previous SAR and QSAR studies, 3D-QSAR analysis has been performed using CoMFA and CoMSIA approaches applied to a set of 39 alpha-(N)-heterocyclic carboxaldehydes thiosemicarbazones with their inhibitory activity values (IC(50)) evaluated against ribonucleotide reductase (RNR) of H.Ep.-2 cells (human epidermoid carcinoma), taken from selected literature. Both rigid and field alignment methods, taking the unsubstituted 2-formylpyridine thiosemicarbazone in its syn conformation as template, have been used to generate multiple predictive CoMFA and CoMSIA models derived from training sets and validated with the corresponding test sets. Acceptable predictive correlation coefficients (Q(cv)(2) from 0.360 to 0.609 for CoMFA and Q(cv)(2) from 0.394 to 0.580 for CoMSIA models) with high fitted correlation coefficients (r` from 0.881 to 0.981 for CoMFA and r(2) from 0.938 to 0.993 for CoMSIA models) and low standard errors (s from 0.135 to 0.383 for CoMFA and s from 0.098 to 0.240 for CoMSIA models) were obtained. More precise CoMFA and CoMSIA models have been derived considering the subset of thiosemicarbazones (TSC) substituted only at 5-position of the pyridine ring (n=22). Reasonable predictive correlation coefficients (Q(cv)(2) from 0.486 to 0.683 for CoMFA and Q(cv)(2) from 0.565 to 0.791 for CoMSIA models) with high fitted correlation coefficients (r(2) from 0.896 to 0.997 for CoMFA and r(2) from 0.991 to 0.998 for CoMSIA models) and very low standard errors (s from 0.040 to 0.179 for CoMFA and s from 0.029 to 0.068 for CoMSIA models) were obtained. The stability of each CoMFA and CoMSIA models was further assessed by performing bootstrapping analysis. For the two sets the generated CoMSIA models showed, in general, better statistics than the corresponding CoMFA models. The analysis of CoMFA and CoMSIA contour maps suggest that a hydrogen bond acceptor near the nitrogen of the pyridine ring can enhance inhibitory activity values. This observation agrees with literature data, which suggests that the nitrogen pyridine lone pairs can complex with the iron ion leading to species that inhibits RNR. The derived CoMFA and CoMSIA models contribute to understand the structural features of this class of TSC as antitumor agents in terms of steric, electrostatic, hydrophobic and hydrogen bond donor and hydrogen bond acceptor fields as well as to the rational design of this key enzyme inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HIV attachment via the CD4 receptor is an important target for developing novel approaches to HIV chemotherapy. Cyclotriazadisulfonamide (CADA) inhibits HIV at submicromolar levels by specifically down-modulating cell-surface and intracellular CD4. An effective five-step synthesis of CADA in 30% overall yield is reported. This synthesis has also been modified to produce more than 50 analogues. Many tail-group analogues have been made by removing the benzyl tail of CADA and replacing it with various alkyl, acyl, alkoxycarbonyl and aminocarbonyl substituents. A series of sidearm analogues, including two unsymmetrical compounds, have also been prepared by modifying the CADA synthesis, replacing the toluenesulfonyl sidearms with other sulfonyl groups. Testing 30 of these compounds in MT-4 cells shows a wide range of CD4 down-modulation potency, which correlates with ability to inhibit HIV-1. Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were constructed using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) approaches. The X-ray crystal structures of four compounds, including CADA, show the same major conformation of the central 12-membered ring. The solid-state structure of CADA was energy minimized and used to generate the remaining 29 structures, which were similarly minimized and aligned to produce the 3D-QSAR models. Both models indicate that steric bulk of the tail group, and, to a lesser extent, the sidearms mainly determine CD4 down-modulation potency in this series of compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human parasitic diseases are the foremost threat to human health and welfare around the world. Trypanosomiasis is a very serious infectious disease against which the currently available drugs are limited and not effective. Therefore, there is an urgent need for new chemotherapeutic agents. One attractive drug target is the major cysteine protease from Trypanosoma cruzi, cruzain. In the present work, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) studies were conducted on a series of thiosemicarbazone and semicarbazone derivatives as inhibitors of cruzain. Molecular modeling studies were performed in order to identify the preferred binding mode of the inhibitors into the enzyme active site, and to generate structural alignments for the three-dimensional quantitative structure-activity relationship (3D QSAR) investigations. Statistically significant models were obtained (CoMFA. r(2) = 0.96 and q(2) = 0.78; CoMSIA, r(2) = 0.91 and q(2) = 0.73), indicating their predictive ability for untested compounds. The models were externally validated employing a test set, and the predicted values were in good agreement with the experimental results. The final QSAR models and the information gathered from the 3D CoMFA and CoMSIA contour maps provided important insights into the chemical and structural basis involved in the molecular recognition process of this family of cruzain inhibitors, and should be useful for the design of new structurally related analogs with improved potency. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative structure-activity relationship (QSAR) analysis is a cornerstone of modern informatics. Predictive computational models of peptide-major histocompatibility complex (MHC)-binding affinity based on QSAR technology have now become important components of modern computational immunovaccinology. Historically, such approaches have been built around semiqualitative, classification methods, but these are now giving way to quantitative regression methods. We review three methods--a 2D-QSAR additive-partial least squares (PLS) and a 3D-QSAR comparative molecular similarity index analysis (CoMSIA) method--which can identify the sequence dependence of peptide-binding specificity for various class I MHC alleles from the reported binding affinities (IC50) of peptide sets. The third method is an iterative self-consistent (ISC) PLS-based additive method, which is a recently developed extension to the additive method for the affinity prediction of class II peptides. The QSAR methods presented here have established themselves as immunoinformatic techniques complementary to existing methodology, useful in the quantitative prediction of binding affinity: current methods for the in silico identification of T-cell epitopes (which form the basis of many vaccines, diagnostics, and reagents) rely on the accurate computational prediction of peptide-MHC affinity. We have reviewed various human and mouse class I and class II allele models. Studied alleles comprise HLA-A*0101, HLA-A*0201, HLA-A*0202, HLA-A*0203, HLA-A*0206, HLA-A*0301, HLA-A*1101, HLA-A*3101, HLA-A*6801, HLA-A*6802, HLA-B*3501, H2-K(k), H2-K(b), H2-D(b) HLA-DRB1*0101, HLA-DRB1*0401, HLA-DRB1*0701, I-A(b), I-A(d), I-A(k), I-A(S), I-E(d), and I-E(k). In this chapter we show a step-by-step guide into predicting the reliability and the resulting models to represent an advance on existing methods. The peptides used in this study are available from the AntiJen database (http://www.jenner.ac.uk/AntiJen). The PLS method is available commercially in the SYBYL molecular modeling software package. The resulting models, which can be used for accurate T-cell epitope prediction, will be made are freely available online at the URL http://www.jenner.ac.uk/MHCPred.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative Structure-Activity Relationship (QSAR) has been applied extensively in predicting toxicity of Disinfection By-Products (DBPs) in drinking water. Among many toxicological properties, acute and chronic toxicities of DBPs have been widely used in health risk assessment of DBPs. These toxicities are correlated with molecular properties, which are usually correlated with molecular descriptors. The primary goals of this thesis are: (1) to investigate the effects of molecular descriptors (e.g., chlorine number) on molecular properties such as energy of the lowest unoccupied molecular orbital (E LUMO) via QSAR modelling and analysis; (2) to validate the models by using internal and external cross-validation techniques; (3) to quantify the model uncertainties through Taylor and Monte Carlo Simulation. One of the very important ways to predict molecular properties such as ELUMO is using QSAR analysis. In this study, number of chlorine (NCl ) and number of carbon (NC) as well as energy of the highest occupied molecular orbital (EHOMO) are used as molecular descriptors. There are typically three approaches used in QSAR model development: (1) Linear or Multi-linear Regression (MLR); (2) Partial Least Squares (PLS); and (3) Principle Component Regression (PCR). In QSAR analysis, a very critical step is model validation after QSAR models are established and before applying them to toxicity prediction. The DBPs to be studied include five chemical classes: chlorinated alkanes, alkenes, and aromatics. In addition, validated QSARs are developed to describe the toxicity of selected groups (i.e., chloro-alkane and aromatic compounds with a nitro- or cyano group) of DBP chemicals to three types of organisms (e.g., Fish, T. pyriformis, and P.pyosphoreum) based on experimental toxicity data from the literature. The results show that: (1) QSAR models to predict molecular property built by MLR, PLS or PCR can be used either to select valid data points or to eliminate outliers; (2) The Leave-One-Out Cross-Validation procedure by itself is not enough to give a reliable representation of the predictive ability of the QSAR models, however, Leave-Many-Out/K-fold cross-validation and external validation can be applied together to achieve more reliable results; (3) E LUMO are shown to correlate highly with the NCl for several classes of DBPs; and (4) According to uncertainty analysis using Taylor method, the uncertainty of QSAR models is contributed mostly from NCl for all DBP classes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative Structure-Activity Relationship (QSAR) has been applied extensively in predicting toxicity of Disinfection By-Products (DBPs) in drinking water. Among many toxicological properties, acute and chronic toxicities of DBPs have been widely used in health risk assessment of DBPs. These toxicities are correlated with molecular properties, which are usually correlated with molecular descriptors. The primary goals of this thesis are: 1) to investigate the effects of molecular descriptors (e.g., chlorine number) on molecular properties such as energy of the lowest unoccupied molecular orbital (ELUMO) via QSAR modelling and analysis; 2) to validate the models by using internal and external cross-validation techniques; 3) to quantify the model uncertainties through Taylor and Monte Carlo Simulation. One of the very important ways to predict molecular properties such as ELUMO is using QSAR analysis. In this study, number of chlorine (NCl) and number of carbon (NC) as well as energy of the highest occupied molecular orbital (EHOMO) are used as molecular descriptors. There are typically three approaches used in QSAR model development: 1) Linear or Multi-linear Regression (MLR); 2) Partial Least Squares (PLS); and 3) Principle Component Regression (PCR). In QSAR analysis, a very critical step is model validation after QSAR models are established and before applying them to toxicity prediction. The DBPs to be studied include five chemical classes: chlorinated alkanes, alkenes, and aromatics. In addition, validated QSARs are developed to describe the toxicity of selected groups (i.e., chloro-alkane and aromatic compounds with a nitro- or cyano group) of DBP chemicals to three types of organisms (e.g., Fish, T. pyriformis, and P.pyosphoreum) based on experimental toxicity data from the literature. The results show that: 1) QSAR models to predict molecular property built by MLR, PLS or PCR can be used either to select valid data points or to eliminate outliers; 2) The Leave-One-Out Cross-Validation procedure by itself is not enough to give a reliable representation of the predictive ability of the QSAR models, however, Leave-Many-Out/K-fold cross-validation and external validation can be applied together to achieve more reliable results; 3) ELUMO are shown to correlate highly with the NCl for several classes of DBPs; and 4) According to uncertainty analysis using Taylor method, the uncertainty of QSAR models is contributed mostly from NCl for all DBP classes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The underlying assumption in quantitative structure–activity relationship (QSAR) methodology is that related chemical structures exhibit related biological activities. We review here two QSAR methods in terms of their applicability for human MHC supermotif definition. Supermotifs are motifs that characterise binding to more than one allele. Supermotif definition is the initial in silico step of epitope-based vaccine design. The first QSAR method we review here—the additive method—is based on the assumption that the binding affinity of a peptide depends on contributions from both amino acids and the interactions between them. The second method is a 3D-QSAR method: comparative molecular similarity indices analysis (CoMSIA). Both methods were applied to 771 peptides binding to 9 HLA alleles. Five of the alleles (A*0201, A* 0202, A*0203, A*0206 and A*6802) belong to the HLA-A2 superfamily and the other four (A*0301, A*1101, A*3101 and A*6801) to the HLA-A3 superfamily. For each superfamily, supermotifs defined by the two QSAR methods agree closely and are supported by many experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The trypanocidal activity of racemic mixtures of cis- and trans-methylpluviatolides was evaluated in vitro against trypomastigote forms of two strains of Trypanosoma cruzi, and in the enzymatic assay of T. cruzi gGAPDH. The cytotoxicity of the compounds was assessed by the MTT method using LLC-MK2 cells. The effect of the compounds on peroxide and NO production were also investigated. The mixture of the trans stereoisomers displayed trypanocidal activity (IC(50) similar to 89.3 mu M). Therefore, it was separated by chiral HPLC, furnishing the and (+) (-)-enantiomers. Only the (-)-enantiomer was active against the parasite (IC(50) similar to 18.7 mu M). Despite being inactive, the (+)-enantiomer acted as an antagonistic competitor. Trans-methylpluviatolide displayed low toxicity for LLC-MK(2) cells, with an IC(50) of 6.53 mM. Furthermore, methylpluviatolide neither inhibited gGAPDH activity nor hindered peroxide and NO production at the evaluated concentrations. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives The study`s aims were to evaluate the antimycobacterial activity of 13 synthetic neolignan analogues and to perform structure activity relationship analysis (SAR). The cytotoxicity of the compound 2-phenoxy-1-phenylethanone (LS-2, 1) in mammalian cells, such as the acute toxicity in mice, was also evaluated. Methods The extra and intracellular antimycobacterial activity was evaluated on Mycobacterium tuberculosis H37Rv. Cytotoxicity studies were performed using V79 cells, J774 macrophages and rat hepatocytes. Additionally, the in-vivo acute toxicity was tested in mice. The SAR analysis was performed by Principal Component Analysis (PCA). Key findings Among the 13 analogues tested, LS-2 (1) was the most effective, showing promising antimycobacterial activity and very low cytotoxicity in V79 cells and in J774 macrophages, while no toxicity was observed in rat hepatocytes. The selectivity index (SI) of LS-2 (1) was 91 and the calculated LD50 was 1870 mg/kg, highlighting the very low toxicity in mice. SAR analysis showed that the highest electrophilicity and the lowest molar volume are physical-chemical characteristics important for the antimycobacterial activity of the LS-2 (1). Conclusions LS-2 (1) showed promising antimycobacterial activity and very weak cytotoxicity in cell culture, as well as an absence of toxicity in primary culture of hepatocytes. In the acute toxicity study there was an indication of absence of toxicity on murine models, in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of ring substituted 3-phenyl-1-(1,4-di-N-oxide quinoxalin-2-yl)-2-propen-1-one derivatives were synthesized and tested for in vitro leishmanicidal activity against amastigotes of Leishmania amazonensis in axenical cultures and murine infected macrophages. Structure-activity relationships demonstrated the importance of a radical methoxy at position R3', R4' and R5'. (2E)-3-(3,4,5-trimethoxy-phenyl)-1-(3,6,7-trimethyl-1,4-dioxy-quinoxalin-2-yl)-propenone was the most active. Cytotoxicity on macrophages revealed that this product was almost six times more active than toxic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cross-recognition of peptides by cytotoxic T lymphocytes is a key element in immunology and in particular in peptide based immunotherapy. Here we develop three-dimensional (3D) quantitative structure-activity relationships (QSARs) to predict cross-recognition by Melan-A-specific cytotoxic T lymphocytes of peptides bound to HLA A*0201 (hereafter referred to as HLA A2). First, we predict the structure of a set of self- and pathogen-derived peptides bound to HLA A2 using a previously developed ab initio structure prediction approach [Fagerberg et al., J. Mol. Biol., 521-46 (2006)]. Second, shape and electrostatic energy calculations are performed on a 3D grid to produce similarity matrices which are combined with a genetic neural network method [So et al., J. Med. Chem., 4347-59 (1997)] to generate 3D-QSAR models. The models are extensively validated using several different approaches. During the model generation, the leave-one-out cross-validated correlation coefficient (q (2)) is used as the fitness criterion and all obtained models are evaluated based on their q (2) values. Moreover, the best model obtained for a partitioned data set is evaluated by its correlation coefficient (r = 0.92 for the external test set). The physical relevance of all models is tested using a functional dependence analysis and the robustness of the models obtained for the entire data set is confirmed using y-randomization. Finally, the validated models are tested for their utility in the setting of rational peptide design: their ability to discriminate between peptides that only contain side chain substitutions in a single secondary anchor position is evaluated. In addition, the predicted cross-recognition of the mono-substituted peptides is confirmed experimentally in chromium-release assays. These results underline the utility of 3D-QSARs in peptide mimetic design and suggest that the properties of the unbound epitope are sufficient to capture most of the information to determine the cross-recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The marine alkaloid, Lamellarin D (Lam-D), has shown potent cytotoxicity in numerous cancer cell lines, and was recently identified as a potent topoisomerase I inhibitor. A library of open lactone analogs of Lam-D was prepared from a methyl 5,6-dihydropyrrolo[2,1-a]isoquinoline-3- carboxylate scaffold (1) by introducing various aryl groups through sequential and regioselective bromination, followed by Pd(0)-catalyzed Suzuki cross-coupling chemistry. The compounds were obtained in a 24-44% overall yield, and tested in a panel of three human tumor cell lines, MDA-MB- 231 (breast), A-549 (lung), and HT-29 (colon), to evaluate their cytotoxic potential. From these data the SAR study concluded that more than 75% of the open-chain Lam-D analogs tested showed cytotoxicity in a low micromolar GI50 range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The marine alkaloid, Lamellarin D (Lam-D), has shown potent cytotoxicity in numerous cancer cell lines, and was recently identified as a potent topoisomerase I inhibitor. A library of open lactone analogs of Lam-D was prepared from a methyl 5,6-dihydropyrrolo[2,1-a]isoquinoline-3- carboxylate scaffold (1) by introducing various aryl groups through sequential and regioselective bromination, followed by Pd(0)-catalyzed Suzuki cross-coupling chemistry. The compounds were obtained in a 24-44% overall yield, and tested in a panel of three human tumor cell lines, MDA-MB- 231 (breast), A-549 (lung), and HT-29 (colon), to evaluate their cytotoxic potential. From these data the SAR study concluded that more than 75% of the open-chain Lam-D analogs tested showed cytotoxicity in a low micromolar GI50 range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We are developing computational tools supporting the detailed analysis of the dependence of neural electrophysiological response on dendritic morphology. We approach this problem by combining simulations of faithful models of neurons (experimental real life morphological data with known models of channel kinetics) with algorithmic extraction of morphological and physiological parameters and statistical analysis. In this paper, we present the novel method for an automatic recognition of spike trains in voltage traces, which eliminates the need for human intervention. This enables classification of waveforms with consistent criteria across all the analyzed traces and so it amounts to reduction of the noise in the data. This method allows for an automatic extraction of relevant physiological parameters necessary for further statistical analysis. In order to illustrate the usefulness of this procedure to analyze voltage traces, we characterized the influence of the somatic current injection level on several electrophysiological parameters in a set of modeled neurons. This application suggests that such an algorithmic processing of physiological data extracts parameters in a suitable form for further investigation of structure-activity relationship in single neurons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comparative molecular field analysis (CoMFA) studies were conducted on a series of 100 isoniazid derivatives as anti-tuberculosis agents using two receptor-independent structural data set alignment strategies: (1) rigid-body fit, and (2) pharmacophore-based. Significant cross-validated correlation coefficients were obtained (CoMFA(1), q(2) = 0,75 and CoMFA(2), q(2) = 0.74), indicating the potential of the models for untested compounds. The models were then used to predict the inhibitory potency of 20 test set compounds that were not included in the training set, and the predicted values were in good agreement with the experimental results.