15 resultados para Quadratures
Resumo:
MSC 2010: 33C47, 42C05, 41A55, 65D30, 65D32
Resumo:
We propose a Riesz transform approach to the demodulation of digital holograms. The Riesz transform is a higher-dimensional extension of the Hilbert transform and is steerable to a desired orientation. Accurate demodulation of the hologram requires a reliable methodology by which quadrature-phase functions (or simply, quadratures) can be constructed. The Riesz transform, by itself, does not yield quadratures. However, one can start with the Riesz transform and construct the so-called vortex operator by employing the notion of quasi-eigenfunctions, and this approach results in accurate quadratures. The key advantage of using the vortex operator is that it effectively handles nonplanar fringes (interference patterns) and has the ability to compensate for the local orientation. Therefore, this method results in aberration-free holographic imaging even in the case when the wavefronts are not planar. We calibrate the method by estimating the orientation from a reference hologram, measured with an empty field of view. Demodulation results on synthesized planar as well as nonplanar fringe patterns show that the accuracy of demodulation is high. We also perform validation on real experimental measurements of Caenorhabditis elegans acquired with a digital holographic microscope. (c) 2012 Optical Society of America
Resumo:
The notion of the 1-D analytic signal is well understood and has found many applications. At the heart of the analytic signal concept is the Hilbert transform. The problem in extending the concept of analytic signal to higher dimensions is that there is no unique multidimensional definition of the Hilbert transform. Also, the notion of analyticity is not so well under stood in higher dimensions. Of the several 2-D extensions of the Hilbert transform, the spiral-phase quadrature transform or the Riesz transform seems to be the natural extension and has attracted a lot of attention mainly due to its isotropic properties. From the Riesz transform, Larkin et al. constructed a vortex operator, which approximates the quadratures based on asymptotic stationary-phase analysis. In this paper, we show an alternative proof for the quadrature approximation property by invoking the quasi-eigenfunction property of linear, shift-invariant systems. We show that the vortex operator comes up as a natural consequence of applying this property. We also characterize the quadrature approximation error in terms of its energy as well as the peak spatial-domain error. Such results are available for 1-D signals, but their counter part for 2-D signals have not been provided. We also provide simulation results to supplement the analytical calculations.
Resumo:
Quantum mechanics places limits on the minimum energy of a harmonic oscillator via the ever-present "zero-point" fluctuations of the quantum ground state. Through squeezing, however, it is possible to decrease the noise of a single motional quadrature below the zero-point level as long as noise is added to the orthogonal quadrature. While squeezing below the quantum noise level was achieved decades ago with light, quantum squeezing of the motion of a mechanical resonator is a more difficult prospect due to the large thermal occupations of megahertz-frequency mechanical devices even at typical dilution refrigerator temperatures of ~ 10 mK.
Kronwald, Marquardt, and Clerk (2013) propose a method of squeezing a single quadrature of mechanical motion below the level of its zero-point fluctuations, even when the mechanics starts out with a large thermal occupation. The scheme operates under the framework of cavity optomechanics, where an optical or microwave cavity is coupled to the mechanics in order to control and read out the mechanical state. In the proposal, two pump tones are applied to the cavity, each detuned from the cavity resonance by the mechanical frequency. The pump tones establish and couple the mechanics to a squeezed reservoir, producing arbitrarily-large, steady-state squeezing of the mechanical motion. In this dissertation, I describe two experiments related to the implementation of this proposal in an electromechanical system. I also expand on the theory presented in Kronwald et. al. to include the effects of squeezing in the presence of classical microwave noise, and without assumptions of perfect alignment of the pump frequencies.
In the first experiment, we produce a squeezed thermal state using the method of Kronwald et. al.. We perform back-action evading measurements of the mechanical squeezed state in order to probe the noise in both quadratures of the mechanics. Using this method, we detect single-quadrature fluctuations at the level of 1.09 +/- 0.06 times the quantum zero-point motion.
In the second experiment, we measure the spectral noise of the microwave cavity in the presence of the squeezing tones and fit a full model to the spectrum in order to deduce a quadrature variance of 0.80 +/- 0.03 times the zero-point level. These measurements provide the first evidence of quantum squeezing of motion in a mechanical resonator.
Resumo:
We study a continuous-variable entangled state composed of two states which are squeezed in two opposite quadratures in phase space. Various entanglement conditions are tested for the entangled squeezed state and we study decoherence models for noise, producing a mixed entangled squeezed state. We briefly describe a probabilistic protocol for entanglement swapping based on the use of this class of entangled states and the main features of a general generation scheme.
Resumo:
Symmetry group methods are applied to obtain all explicit group-invariant radial solutions to a class of semilinear Schr¨odinger equations in dimensions n = 1. Both focusing and defocusing cases of a power nonlinearity are considered, including the special case of the pseudo-conformal power p = 4/n relevant for critical dynamics. The methods involve, first, reduction of the Schr¨odinger equations to group-invariant semilinear complex 2nd order ordinary differential equations (ODEs) with respect to an optimal set of one-dimensional point symmetry groups, and second, use of inherited symmetries, hidden symmetries, and conditional symmetries to solve each ODE by quadratures. Through Noether’s theorem, all conservation laws arising from these point symmetry groups are listed. Some group-invariant solutions are found to exist for values of n other than just positive integers, and in such cases an alternative two-dimensional form of the Schr¨odinger equations involving an extra modulation term with a parameter m = 2−n = 0 is discussed.
Resumo:
The attached file is created with Scientific Workplace Latex
Resumo:
The problem of computing the effective nonrelativistic potential U-D for the interaction of charged-scalar bosons, within the context of D-dimensional electromagnetism with a cutoff, is reduced to quadratures. It is shown that U-3 cannot bind a pair of identical charged-scalar bosons; nevertheless, numerical calculations indicate that boson-boson bound states do exist in the framework of three-dimensional higher-derivative electromagnetism augmented by a topological Chern-Simons term.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Baseando-se em um sistema com um grau de liberdade, é apresentada neste trabalho a equação de movimento, bem como a sua resolução através das Transformadas de Fourier e da Transformada Rápida de Fourier (FFT). Através da análise da forma como são feitas as integrações nas transformadas, foram estudados e aplicados os ponderadores de Newton-Cotes na resolução da equação de movimento, de forma a aumentar substancialmente a precisão dos resultados em comparação com a forma convencional da Transformada de Fourier.
Resumo:
Recent experimental measurements of atomic intensity correlations through atom shot noise suggest that atomic quadrature phase correlations may soon be measured with a similar precision. We propose a test of local realism with mesoscopic numbers of massive particles based on such measurements. Using dissociation of a Bose-Einstein condensate of diatomic molecules into bosonic atoms, we demonstrate that strongly entangled atomic beams may be produced which possess Einstein-Podolsky-Rosen (EPR) correlations in field quadratures in direct analogy to the position and momentum correlations originally considered by EPR.
Resumo:
We realize an end-to-end no-switching quantum key distribution protocol using continuous-wave coherent light. We encode weak broadband Gaussian modulations onto the amplitude and phase quadratures of light beams. Our no-switching protocol achieves high secret key rate via a post-selection protocol that utilizes both quadrature information simultaneously. We establish a secret key rate of 25 Mbits/s for a lossless channel and 1 kbit/s for 90% channel loss, per 17 MHz of detected bandwidth, assuming individual Gaussian eavesdropping attacks. Since our scheme is truly broadband, it can potentially deliver orders of magnitude higher key rates by extending the encoding bandwidth with higher-end telecommunication technology.
Resumo:
We propose a new nonlinear optical loop mirror based configuration capable of regenerating regular rectangular quadrature amplitude modulated (QAM) signals. The scheme achieves suppression of noise distortion on both signal quadratures through the realization of two orthogonal regenerative Fourier transformations. Numerical simulations show the performance of the scheme for high constellation complexities (including 256-QAM formats).
Resumo:
The quantum state of light changes its nature when being reflected off a mechanical oscillator due to the latter's susceptibility to radiation pressure. As a result, a coherent state can transform into a squeezed state and can get entangled with the motion of the oscillator. Full information of the state of light can only be gathered by a tomographic measurement. Here we demonstrate a tomographic interferometer readout by measuring arbitrary quadratures of the light field exiting a Michelson-Sagnac interferometer that contains a thermally excited high-quality silicon nitride membrane. A readout noise of 1.9 x 10(-16) mHz(-1/2) around the membrane's fundamental oscillation mode at 133 kHz has been achieved, going below the peak value of the standard quantum limit by a factor of 8.2 (9 dB). The readout noise was entirely dominated by shot noise in a rather broad frequency range around the mechanical resonance.