59 resultados para QuEChERS
Resumo:
This paper describes a comparison of adaptations of the QuEChERS (quick, easy, cheap, effective, rugged and safe) approach for the determination of 14 organochlorine pesticide (OCP) residues in strawberry jam by concurrent use of gas chromatography (GC) coupled to electron capture detector (ECD) and GC tandem mass spectrometry (GC-MS/MS). Three versions were tested based on the original QuEChERS method. The results were good (overall average of 89% recoveries with 15% RSD) using the ultrasonic bath at five spiked levels. Performance characteristics, such as accuracy, precision, linear range, limits of detection (LOD) and quantification (LOQ), were determined for each pesticide. LOD ranged from 0.8 to 8.9 microg kg-1 ; LOQ was in the range of 2.5–29.8 microg kg- 1; and calibration curves were linear (r2>0.9970) in the whole range of the explored concentrations (5–100 microg kg- 1). The LODs of these pesticides were much lower than the maximum residue levels (MRLs) allowed in Europe for strawberries. The method was successfully applied to the quantification of OCP in commercially available jams. The OCPs were detected lower than the LOD.
Resumo:
A QuEChERS method has been developed for the determination of 14 organochlorine pesticides in 14 soils from different Portuguese regions with wide range composition. The extracts were analysed by GC-ECD (where GC-ECD is gas chromatography-electron-capture detector) and confirmed by GC-MS/MS (where MS/MS is tandem mass spectrometry). The organic matter content is a key factor in the process efficiency. An optimization was carried out according to soils organic carbon level, divided in two groups: HS (organic carbon>2.3%) and LS (organic carbon<2.3%). Themethod was validated through linearity, recovery, precision and accuracy studies. The quantification was carried out using a matrixmatched calibration to minimize the existence of the matrix effect. Acceptable recoveries were obtained (70–120%) with a relative standard deviation of ≤16% for the three levels of contamination. The ranges of the limits of detection and of the limits of quantification in soils HS were from 3.42 to 23.77 μg kg−1 and from 11.41 to 79.23 μg kg−1, respectively. For LS soils, the limits of detection ranged from 6.11 to 14.78 μg kg−1 and the limits of quantification from 20.37 to 49.27 μg kg−1. In the 14 collected soil samples only one showed a residue of dieldrin (45.36 μg kg−1) above the limit of quantification. This methodology combines the advantages of QuEChERS, GC-ECD detection and GC-MS/MS confirmation producing a very rapid, sensitive and reliable procedure which can be applied in routine analytical laboratories.
Resumo:
Ibuprofen is one of the most used active pharmaceutical ingredients worldwide. A new method for the analysis of ibuprofen and its metabolites, hydroxyibuprofen and carboxyibuprofen, in soils is presented. The extraction of these compounds from the soil matrices was performed by using a modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) method. The method involves a single extraction of the investigated compounds with purified water (acidified at pH 2.5 with hydrochloric acid), and a slow and continuous addition of the QuEChERS content, followed by the addition of acidified acetonitrile (1% acetic acid), prior to the determination by liquid chromatography coupled with fluorescence detection (LC–FLD). Validation studies were carried out using soil samples with a range of organic carbon contents. Recoveries of the fortified samples ranged from 79.5% to 101%. Relative standard deviations for all matrix–compound combinations did not exceed 3%. The method quantification limits were ≤22.4 μg kg−1 in all cases. The developed method was applied to the analysis of sixteen real samples.
Resumo:
A QuEChERS method for the extraction of ochratoxin A (OTA) from bread samples was evaluated. A factorial design (23) was used to find the optimal QuEChERS parameters (extraction time, extraction solvent volume and sample mass). Extracts were analysed by LC with fluorescence detection. The optimal extraction conditions were: 5 g of sample, 15 mL of acetonitrile and 3 min of agitation. The extraction procedure was validated by systematic recovery experiments at three levels. The recoveries obtained ranged from 94.8% (at 1.0 μg kg -1) to 96.6% (at 3.0 μg kg -1). The limit of quantification of the method was 0.05 μg kg -1. The optimised procedure was applied to 20 samples of different bread types (‘‘Carcaça’’, ‘‘Broa de Milho’’, and ‘‘Broa de Avintes’’) highly consumed in Portugal. None of the samples exceeded the established European legal limit of 3 μg kg -1.
Resumo:
The present work describes the development of an analytical method for the determination of methiocarb and its degradation products (methiocarb sulfoxide and methiocarb sulfone) in banana samples, using the QuEChERS (quick, easy, cheap, effective, rugged, and safe) procedure followed by liquid chromatography coupled to photodiode array detector (LCPAD). Calibration curves were linear in the range of 0.5−10 mg L−1 for all compounds studied. The average recoveries, measured at 0.1 mg kg−1 wet weight, were 92.0 (RSD = 1.8%, n = 3), 84.0 (RSD = 3.9%, n = 3), and 95.2% (RSD = 1.9%, n = 3) for methiocarb sulfoxide, methiocarb sulfone, and methiocarb, respectively. Banana samples treated with methiocarb were collected from an experimental field. The developed method was applied to the analysis of 24 samples (peel and pulp) and to 5 banana pulp samples. Generally, the highest levels were found for methiocarb sulfoxide and methiocarb. Methiocarb sulfone levels were below the limit of quantification, except in one sample (not detected).
Resumo:
QuEChERS original method was modified into a new version for pesticides determination in soils. The QuEChERS method is based on liquid–liquid portioning with ACN and was followed by cleanup step using dispersive SPE and disposable pipette tips. Gas chromatographic separation with MS detection was carried out for pesticides quantification. The method was validated using recovery experiments for 36 multiclass pesticides. Mean recoveries of pesticides at each of the four spiking levels between 10–300 µg/kg of soil ranged from 70–120% for 26 pesticides with RSD values less than 15%. The method achieved low limit of detection less than 7.6 µ g/kg. Matrix effects were observed for 13 pesticides. Matrix effects were compensated by using matrix-matched calibration. The method was applied successfully using d-SPE or DPX in the analysis of the pesticides in soils from organic farming and integrated pest management.
Resumo:
An optimised version of the Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method for simultaneous determination of 14 organochlorine pesticides in carrots was developed using gas chromatography coupled with electron-capture detector (GC-ECD) and confirmation by gas chromatography tandem mass spectrometry (GC-MS/MS). A citrate-buffered version of QuEChERS was applied for the extraction of the organochlorine pesticides, and for the extract clean-up, primary secondary amine, octadecyl-bonded silica (C18), magnesium sulphate (MgSO4) and graphitized carbon black were used as sorbents. The GC-ECD determination of the target compounds was achieved in less than 20 min. The limits of detection were below the EUmaximum residue limits (MRLs) for carrots, 10–50 μg kg−1, while the limit of quantification did exceed 10 μg kg−1 for hexachlorobenzene (HCB). The introduction of a sonication step was shown to improve the recoveries. The overall average recoveries in carrots, at the four tested levels (60, 80, 100 and 140 μg kg−1), ranged from 66 to 111% with relative standard deviations in the range of 2– 15 % (n03) for all analytes, with the exception of HCB. The method has been applied to the analysis of 21 carrot samples from different Portuguese regions, and β-HCH was the pesticide most frequently found, with concentrations oscillating between less than the limit of quantification to 14.6 μg kg−1. Only one sample had a pesticide residue (β-HCH) above the MRL, 14.6 μg kg−1. This methodology combines the advantages of both QuEChERS and GC-ECD, producing a very rapid, sensitive and reliable procedure which can be applied in routine analytical laboratories.
Resumo:
In this study, we sought to assess the applicability of GC–MS/MS for the identification and quantification of 36 pesticides in strawberry from integrated pest management (IPM) and organic farming (OF). Citrate versions of QuEChERS (quick, easy, cheap, effective, rugged and safe) using dispersive solid-phase extraction (d-SPE) and disposable pipette extraction (DPX) for cleanup were compared for pesticide extraction. For cleanup, a combination of MgSO4, primary secondary amine and C18 was used for both the versions. Significant differences were observed in recovery results between the two sample preparation versions (DPX and d-SPE). Overall, 86% of the pesticides achieved recoveries (three spiking levels 10, 50 and 200 µg/kg) in the range of 70–120%, with <13% RSD. The matrix effects were also evaluated in both the versions and in strawberries from different crop types. Although not evidencing significant differences between the two methodologies were observed, however, the DPX cleanup proved to be a faster technique and easy to execute. The results indicate that QuEChERS with d-SPE and DPX and GC–MS/MS analysis achieved reliable quantification and identification of 36 pesticide residues in strawberries from OF and IPM.
Resumo:
Carbamate compounds are an important group of cholinesterase inhibitors. There is a need for creating awareness regarding the risks of the inadequate carbamate use in the residential areas due to potential adverse human effects. Carbaryl is a commonly used pesticide worldwide. A simple, fast, and high throughput method was developed employing liquid chromatography with fluorescence detector to determine carbaryl residues in rat feces. The extraction was performed by using a rapid, easy, cheap, effective, reliable, and safe (QuEChERS) method, using acetonitrile as the extracting solvent. The parameters for the performance of the extraction method were optimized, such as ratio of mass of sample per volume of extraction solvent, QuEChERS content, and cleanup columns. Linear response was obtained for all calibration curves (solven and matrix-matched) over the established concentration range (5 500 mg/L) with a correlation coefficients higher than 0.999. The achieved recovery was 97.9% with relative standard deviation values of 1.1% (n D 4) at 167 mg/kg fortified concentration level and the limits of detection and quantification were 27.7 and 92.3 mg/kg respectively.
Resumo:
In this study a citrate-buffered version of QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method for determination of 14 organochlorine pesticides (OCPs) residues in tamarind peel, fruit and commercial pulp was optimized using gas chromatography (GC) coupled with electron-capture detector (ECD) and confirmation by GC tandem mass spectrometry (GC–MS/MS). Five procedures were tested based on the original QuEChERS method. The best one was achieved with increased time in ultrasonic bath. For the extract clean-up, primary secondary amine (PSA), octadecyl-bonded silica (C18) and magnesium sulphate (MgSO4) were used as sorbents for tamarind fruit and commercial pulp and for peel was also added graphitized carbon black (GCB). The samples mass was optimized according to the best recoveries (1.0 g for peel and fruit; 0.5 g for pulp). The method results showed the matrix-matched calibration curve linearity was r2 > 0.99 for all target analytes in all samples. The overall average recoveries (spiked at 20, 40 and 60 μg kg−1) have been considered satisfactory presenting values between 70 and 115% with RSD of 2–15 % (n = 3) for all analytes, with the exception of HCB (in peel sample). The ranges of limits of detection (LOD) and quantification (LOQ) for OCPs were for peel (LOD: 8.0–21 μg kg−1; LOQ: 27–98 μg kg−1); for fruit (LOD: 4–10 μg kg−1; LOQ: 15–49 μg kg−1) and for commercial pulp (LOD: 2–5 μg kg−1; LOQ: 7–27 μg kg−1). The method was successfully applied in tamarind samples being considered a rapid, sensitive and reliable procedure.
Resumo:
Die Arbeit befasst sich mit der Vslidierung einer analytischen Methode zur Bestimmung von Pflanzenschutzmittelrückständen in fetthaltigen Lebensmitteln. Dazu erfolgte die Anpassung der QuEChERS-Methode, welche zuvor bei dem SGS Institut Fresenius nur für nicht fetthaltige Lebensmittel angewendet wurde. Vorgestellt wird die Validierung von drei Pstizid-Analyten in den Lebensmittelmatrices Sonnenblumenöl und Kürbiskerne. Die Proben wurden mit der angepassten QuEChERS-Methode aufgearbeitet und mittels Kopplung von Flüssigchromatographie und Massenspektrometrie analysiert
Resumo:
This review attempts to provide an updated overview of the Quick, Easy, Cheap, Effective, Ruged and Safe (QuEChERS) multiresidue extraction method, that involves initial extraction in acetonitrile, an extraction/partition step after the addition of salt, and a cleanup step utilizing dispersive solid phase extraction. QuEChERS method is nowadays the most applied extraction method for the determination of pesticide residues in food samples, providing acceptable recoveries for acidic, neutral and basic pesticides. Several applications for various food matrices (fruits, vegetables, cereals and others) in combination with chromatographic mass spectrometry analysis were presented.
Resumo:
An evaluation of the pesticides extraction from onion using a modern sample preparation method (QuEChERS) and determination by liquid chromatography tandem mass spectrometry was carried out. All the calibration curves showed r>0.99. The recoveries ranged between 61.8 and 120.0% with relative standard deviation lower than 20% for all compounds. Due to the occurrence of matrix effect, the quantification was performed using matrix-matched calibration. The limits of quantification of the method were between 0.0005 and 0.05 mg kg-1. The method shows the advantages of not require the clean-up step and consume low volume of organic solvents, decreasing time, costs and residues.
Resumo:
This paper presents a practical and rapid method which was validated for simultaneous quantification and confirmation of 29 pesticides in fruits and vegetables using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The samples were extracted following the method known as QuEChERS. Using the developed chromatographic conditions, the pesticides can be separated in less than 9 min. Two multiple reaction monitoring (MRM) assays were used for each pesticide. Four representative matrices (lettuce, tomato, apple and grapes) were selected to investigate the effect in recoveries and precision. Typical recoveries ranged from 70-120%, with relative standard deviation (RSDs) lower than 20%.
Resumo:
The QuEChERS extraction method followed by quantification using HPLC/UV-FL was evaluated for deoxynivalenol (DON) and zearalenone (ZEA) determination in natural and parboiled rice and their fractions (bran and husk). The comparison between QuEChERS and partition with acetonitrile extraction showed that the first one was better. It presented higher recovery (91% for DON, 105% for ZEA) wih precision ranging from 1.5 to 18.6%. The limits of quantification were 22.2 µg kg-1 for DON and 4.3 µg kg-1 for ZEA. DON and ZEA showed higher levels in endosperm of parboiled rice (8 e 111.7 µg kg-1, respectively) when compared to natural rice.