992 resultados para QUASI-PARTICLE STATES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the energy spectrum of ground state and quasi-particle excitation spectrum of hard-core bosons, which behave very much like spinless noninteracting fermions, in optical lattices by means of the perturbation expansion and Bogoliubov approach. The results show that the energy spectrum has a single band structure, and the energy is lower near zero momentum; the excitation spectrum gives corresponding energy gap, and the system is in Mott-insulating state at Tonks limit. The analytic result of energy spectrum is in good agreement with that calculated in terms of Green's function at strong correlation limit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have applied the Green function theory in GW approximation to calculate the quasiparticle energies for semiconductors Si and GaAs. Good agreements of the calculated excitation energies and fundamental energy gaps with the experimental band structures were achieved. We obtained the calculated fundamental gaps of Si and GaAs to be 1.22 and 1.42 eV in comparison to the experimental values of 1.17 and 1.52 eV, respectively. Ab initio pseudopotential method has been used to generate basis wavefunctions and charge densities for calculating dielectric matrix elements and electron self-energies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have applied the Green-function method in the GW approximation to calculate quasiparticle energies for the semiconductors GaP and GaAs. Good agreement between the calculated excitation energies and the experimental results was achieved. We obtained calculated direct band gaps of GaP and GaAs of 2.93 and 1.42 eV, respectively, in comparison with the experimental values of 2.90 and 1.52 eV, respectively. An ab initio pseudopotential method has been used to generate basis wave functions and charge densities for calculating the dielectric matrix elements and self-enegies. To evaluate the dynamical effects of the screened interaction, the generalized-plasma-pole model has been utilized to extend the dielectric matrix elements from static results to finite frequencies. We presen the calculated quasiparticle energies at various high-symmetry points of the Brillouin zone and compare them with the experimental results and other calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We successfully applied the Green function theory in GW approximation to calculate the quasiparticle energies for semiconductors Si and GaAs. Ab initio pseudopotential method was adopted to generate basis wavefunctions and charge densities for calculating dielectric matrix elements and electron self-energies. To evaluate dynamical effects of screened interaction, GPP model was utilized to extend dieletric matrix elements from static results to finite frequencies. We give a full account of the theoretical background and the technical details for the first principle pseudopotential calculations of quasiparticle energies in semiconductors and insulators. Careful analyses are given for the effective and accurate evaluations of dielectric matrix elements and quasiparticle self-energies by using the symmetry properties of basis wavefunctions and eigenenergies. Good agreements between the calculated excitation energies and fundamental energy gaps and the experimental band structures were achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To evaluate the dynamical effects of the screened interaction in the calculations of quasiparticle energies in many-electron systems a two-delta-function generalized plasma pole model (GPP) is introduced to simulate the dynamical dielectric function. The usual single delta-function GPP model has the drawback of over simplifications and for the crystals without the center of symmetry is inappropriate to describe the finite frequency behavior for dielectric function matrices. The discrete frequency summation method requires too much computation to achieve converged results since ab initio calculations of dielectric function matrices are to be carried out for many different frequencies. The two-delta GPP model is an optimization of the two approaches. We analyze the two-delta GPP model and propose a method to determine from the first principle calculations the amplitudes and effective frequencies of these delta-functions. Analytical solutions are found for the second order equations for the parameter matrices entering the model. This enables realistic applications of the method to the first principle quasiparticle calculations and makes the calculations truly adjustable parameter free.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiative capture of nucleons at energies of astrophysical interest is one of the most important processes for nucleosynthesis. The nucleon capture can occur either by a compound nucleus reaction or by a direct process. The compound reaction cross sections are usually very small, especially for light nuclei. The direct capture proceeds either via the formation of a single-particle resonance or a non-resonant capture process. In this work we calculate radiative capture cross sections and astrophysical S-factors for nuclei in the mass region A < 20 using single-particle states. We carefully discuss the parameter fitting procedure adopted in the simplified two-body treatment of the capture process. Then we produce a detailed list of cases for which the model works well. Useful quantities, such as spectroscopic factors and asymptotic normalization coefficients, are obtained and compared to published data. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parallel recordings of spike trains of several single cortical neurons in behaving monkeys were analyzed as a hidden Markov process. The parallel spike trains were considered as a multivariate Poisson process whose vector firing rates change with time. As a consequence of this approach, the complete recording can be segmented into a sequence of a few statistically discriminated hidden states, whose dynamics are modeled as a first-order Markov chain. The biological validity and benefits of this approach were examined in several independent ways: (i) the statistical consistency of the segmentation and its correspondence to the behavior of the animals; (ii) direct measurement of the collective flips of activity, obtained by the model; and (iii) the relation between the segmentation and the pair-wise short-term cross-correlations between the recorded spike trains. Comparison with surrogate data was also carried out for each of the above examinations to assure their significance. Our results indicated the existence of well-separated states of activity, within which the firing rates were approximately stationary. With our present data we could reliably discriminate six to eight such states. The transitions between states were fast and were associated with concomitant changes of firing rates of several neurons. Different behavioral modes and stimuli were consistently reflected by different states of neural activity. Moreover, the pair-wise correlations between neurons varied considerably between the different states, supporting the hypothesis that these distinct states were brought about by the cooperative action of many neurons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of cooled Au-197 projectile-fragmentation products has been performed with a storage ring. This has enabled metastable nuclear excitations with energies up to 3 MeV, and half-lives extending to minutes or longer, to be identified in the neutron-rich nuclides Hf-183,Hf-184,Hf-186 and Ta-186,Ta-187. The results support the prediction of a strongly favored isomer region near neutron number 116.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study of K isomerism in the transfermium region around the deformed shells at N=152, Z=102, and N=162, Z=108 provides important information on the structure of heavy nuclei. Recent calculations suggest that the K-isomerism can enhance the stability of such nuclei against alpha emission and spontaneous fission. Nuclei showing K isomerism have neutron and proton orbitals with large spin projections on the symmetry axis which is due to multi quasiparticle states with aligned spins K. Quasi-particle states are formed by breaking pairs of nucleons and raising one or two nucleons in orbitals near the Fermi surface above the gap, forming high K (multi)quasi-particle states mainly at low excitation energies. Experimental examples are the recently studied two quasi-particle K isomers in 250,256-Fm, 254-No, and 270-Ds. Nuclei in this region, are produced with cross sections ranging from several nb up to µb, which are high enough for a detailed decay study. In this work, K isomerism in Sg and No isotopes was studied at the velocity filter SHIP of GSI, Darmstadt. The data were obtained by using a new data acquisition system which was developed and installed during this work. 252,254-No and 260-Sg were produced in fusion evaporation reactions of 48-Ca and 54-Cr projectiles with 206,208-Pb targets at beam energies close to the Coulomb barrier. A new K isomer was discovered in 252-No at excitation energy of 1.25 MeV, which decays to the ground state rotational band via gamma emission. It has a half-life of about 100 ms. The population of the isomeric state was about 20% of the ground state population. Detailed investigations were performed on 254-No in which two isomeric states (275 ms and 198 µs) were already discovered by R.-D. Herzberg, but due to the higher number of observed gamma decays more detailed information about the decay path of the isomers was obtained in the present work. In 260-Sg, we observed no statistically significant component with a half life different from that of the ground state. A comparison between experimental results and theoretical calculations of the single particle energies shows a fair agreement. The structure of the here studied nuclei is in particular important as single particle levels are involved which are relevant for the next shell closure expected to form the region of the shell stabilized superheavy elements at proton numbers 114, 120, or 126 and neutron number 184. K isomers, in particular, could be an ideal tool for the synthesis and study of these isotopes due to enhanced spontaneous fission life times which could result in higher alpha to spontaneous fission branching ratios and longer half lifes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several narrow alpha resonant 16O states were detected through the 12C(6Li,d) reaction, in the range of 12 to 17 MeV of excitation energy. The reaction was measured at a bombarding energy of 25.5 MeV employing the São Paulo Pelletron-Enge-Spectrograph facility and the nuclear emulsion technique. Experimental angular distributions associated with four natural parity quasi-bound states ncar the 4α threshold are presented and compared to DWBA predictions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent experimental advances have made it possible to study spectroscopy in very heavy nuclei. We show that from the excited high-spin structure of transfermium isotopes, one may gain useful information on single-particle states for the superheavy mass region, which is the key to locating the anticipated 'island of stability'. In this work, we employ the Projected Shell Model for Cf, Fm, and No isotopes to study rotation alignment of the particles that occupy particular high-j intruder orbitals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Currents across thin insulators are commonly taken as single electrons moving across classically forbidden regions; this independent particle picture is well-known to describe most tunneling phenomena. Examining quantum transport from a different perspective, i.e., by explicit treatment of electron-electron interactions, we evaluate different single particle approximations with specific application to tunneling in metal-molecule-metal junctions. We find maximizing the overlap of a Slater determinant composed of single-particle states to the many-body current-carrying state is more important than energy minimization for defining single-particle approximations in a system with open boundary conditions. Thus the most suitable single particle effective potential is not one commonly in use by electronic structure methods, such as the Hartree-Fock or Kohn-Sham approximations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ce travail de maîtrise a mené à la rédaction d'un article (Physical Review A 80, 062319 (2009)).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electron quasi-stationary states in a periodic semiconductor superlattice are calculated, as linear combinations of Wannier-Kohn functions, for different values of an electric field applied along the heterostructure. A comparison with an alternative approach, which is based on the localization of quasi-stationary states, is performed. (C) 2004 Elsevier Ltd. All rights reserved.