998 resultados para QUANTUM-GRAVITY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study some aspects of conformal field theory, wormhole physics and two-dimensional random surfaces. Inspite of being rather different, these topics serve as examples of the issues that are involved, both at high and low energy scales, in formulating a quantum theory of gravity. In conformal field theory we show that fusion and braiding properties can be used to determine the operator product coefficients of the non-diagonal Wess-Zumino-Witten models. In wormhole physics we show how Coleman's proposed probability distribution would result in wormholes determining the value of θQCD. We attempt such a calculation and find the most probable value of θQCD to be π. This hints at a potential conflict with nature. In random surfaces we explore the behaviour of conformal field theories coupled to gravity and calculate some partition functions and correlation functions. Our results throw some light on the transition that is believed to occur when the central charge of the matter theory gets larger than one.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a laboratory for loop quantum gravity, we consider the canonical quantization of the three-dimensional Chern-Simons theory on a noncompact space with the topology of a cylinder. Working within the loop quantization formalism, we define at the quantum level the constraints appearing in the canonical approach and completely solve them, thus constructing a gauge and diffeomorphism invariant physical Hilbert space for the theory. This space turns out to be infinite dimensional, but separable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Poincar, group generalizes the Galilei group for high-velocity kinematics. The de Sitter group is assumed to go one step further, generalizing Poincar, as the group governing high-energy kinematics. In other words, ordinary special relativity is here replaced by de Sitter relativity. In this theory, the cosmological constant I > is no longer a free parameter, and can be determined in terms of other quantities. When applied to the whole universe, it is able to predict the value of I > and to explain the cosmic coincidence. When applied to the propagation of ultra-high energy photons, it gives a good estimate of the time delay observed in extragalactic gamma-ray flares. It can, for this reason, be considered a new paradigm to approach the quantum gravity problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spectral principle of Connes and Chamseddine is used as a starting point to define a discrete model for Euclidean quantum gravity. Instead of summing over ordinary geometries, we consider the sum over generalized geometries where topology, metric, and dimension can fluctuate. The model describes the geometry of spaces with a countable number n of points, and is related to the Gaussian unitary ensemble of Hermitian matrices. We show that this simple model has two phases. The expectation value , the average number of points in the Universe, is finite in one phase and diverges in the other. We compute the critical point as well as the critical exponent of . Moreover, the space-time dimension delta is a dynamical observable in our model, and plays the role of an order parameter. The computation of is discussed and an upper bound is found, < 2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dijet production at the Tevatron including effects of virtual exchanges of spin-2 Kaluza-Klein modes in theories with large extra dimensions is considered. The experimental dijet mass and angular distribution are exploited to obtain stringent limits (> 1.2TeV) on the effective string scale M s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis is divided into two main research areas: Classical Cosmology and (Loop) Quantum Gravity. The first part concerns cosmological models with one phantom and one scalar field, that provide the `super-accelerated' scenario not excluded by observations, thus exploring alternatives to the standard LambdaCDM scenario. The second part concerns the spinfoam approach to (Loop) Quantum Gravity, which is an attempt to provide a `sum-over-histories' formulation of gravitational quantum transition amplitudes. The research here presented focuses on the face amplitude of a generic spinfoam model for Quantum Gravity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to explore, within the framework of the presumably asymptotically safe Quantum Einstein Gravity, quantum corrections to black hole spacetimes, in particular in the case of rotating black holes. We have analysed this problem by exploiting the scale dependent Newton s constant implied by the renormalization group equation for the effective average action, and introducing an appropriate "cutoff identification" which relates the renormalization scale to the geometry of the spacetime manifold. We used these two ingredients in order to "renormalization group improve" the classical Kerr metric that describes the spacetime generated by a rotating black hole. We have focused our investigation on four basic subjects of black hole physics. The main results related to these topics can be summarized as follows. Concerning the critical surfaces, i.e. horizons and static limit surfaces, the improvement leads to a smooth deformation of the classical critical surfaces. Their number remains unchanged. In relation to the Penrose process for energy extraction from black holes, we have found that there exists a non-trivial correlation between regions of negative energy states in the phase space of rotating test particles and configurations of critical surfaces of the black hole. As for the vacuum energy-momentum tensor and the energy conditions we have shown that no model with "normal" matter, in the sense of matter fulfilling the usual energy conditions, can simulate the quantum fluctuations described by the improved Kerr spacetime that we have derived. Finally, in the context of black hole thermodynamics, we have performed calculations of the mass and angular momentum of the improved Kerr black hole, applying the standard Komar integrals. The results reflect the antiscreening character of the quantum fluctuations of the gravitational field. Furthermore we calculated approximations to the entropy and the temperature of the improved Kerr black hole to leading order in the angular momentum. More generally we have proven that the temperature can no longer be proportional to the surface gravity if an entropy-like state function is to exist.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questo lavoro viene presentato un recente modello di buco nero che implementa le proprietà quantistiche di quelle regioni dello spaziotempo dove non possono essere ignorate, pena l'implicazione di paradossi concettuali e fenomenologici. In suddetto modello, la regione di spaziotempo dominata da comportamenti quantistici si estende oltre l'orizzonte del buco nero e suscita un'inversione, o più precisamente un effetto tunnel, della traiettoria di collasso della stella in una traiettoria di espansione simmetrica nel tempo. L'inversione impiega un tempo molto lungo per chi assiste al fenomeno a grandi distanze, ma inferiore al tempo di evaporazione del buco nero tramite radiazione di Hawking, trascurata e considerata come un effetto dissipativo da studiarsi in un secondo tempo. Il resto dello spaziotempo, fuori dalla regione quantistica, soddisfa le equazioni di Einstein. Successivamente viene presentata la teoria della Gravità Quantistica a Loop (LQG) che permetterebbe di studiare la dinamica della regione quantistica senza far riferimento a una metrica classica, ma facendo leva sul contenuto relazionale del tessuto spaziotemporale. Il campo gravitazionale viene riformulato in termini di variabili hamiltoniane in uno spazio delle fasi vincolato e con simmetria di gauge, successivamente promosse a operatori su uno spazio di Hilbert legato a una vantaggiosa discretizzazione dello spaziotempo. La teoria permette la definizione di un'ampiezza di transizione fra stati quantistici di geometria spaziotemporale, applicabile allo studio della regione quantistica nel modello di buco nero proposto. Infine vengono poste le basi per un calcolo in LQG dell'ampiezza di transizione del fenomeno di rimbalzo quantistico all'interno del buco nero, e di conseguenza per un calcolo quantistico del tempo di rimbalzo nel riferimento di osservatori statici a grande distanza da esso, utile per trattare a posteriori un modello che tenga conto della radiazione di Hawking e, auspicatamente, fornisca una possibile risoluzione dei problemi legati alla sua esistenza.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reviews the construction of quantum field theory on a 4-dimensional spacetime by combinatorial methods, and discusses the recent developments in the direction of a combinatorial construction of quantum gravity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A set of observables is described for the topological quantum field theory which describes quantum gravity in three space-time dimensions with positive signature and positive cosmological constant. The simplest examples measure the distances between points, giving spectra and probabilities which have a geometrical interpretation. The observables are related to the evaluation of relativistic spin networks by a Fourier transform.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis considers non-perturbative methods in quantum field theory with applications to gravity and cosmology. In particular, there are chapters on black hole holography, inflationary model building, and the conformal bootstrap.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The origin of divergent logarithmic contributions to gauge theory cross sections arising from soft and collinear radiation is explored and a general prescription for tackling next-to-soft logarithms is presented. The NNLO Abelian-like contributions to the Drell-Yan K-factor are reproduced using this generalised prescription. The soft limit of gravity is explored where the interplay between the eikonal phase and Reggeization of the graviton is explained using Wilson line techniques. The Wilson line technique is then implemented to treat the set of next-to-soft contributions arising from dressing external partons with a next-to-soft Wilson line.