1000 resultados para QUANTUM METROLOGY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine the performance of a nonlinear fiber gyroscope for improved signal detection beating the quantum limits of its linear counterparts. The performance is examined when the nonlinear gyroscope is illuminated by practical field states, such as coherent and quadrature squeezed states. This is compared with the case of more ideal probes such as photon-number states.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this thesis I present the work done during my PhD in the area of low dimensional quantum gases. The chapters of this thesis are self contained and represent individual projects which have been peer reviewed and accepted for publication in respected international journals. Various systems are considered, the first of which is a two particle model which possesses an exact analytical solution. I investigate the non-classical correlations that exist between the particles as a function of the tunable properties of the system. In the second work I consider the coherences and out of equilibrium dynamics of a one-dimensional Tonks-Girardeau gas. I show how the coherence of the gas can be inferred from various properties of the reduced state and how this may be observed in experiments. I then present a model which can be used to probe a one-dimensional Fermi gas by performing a measurement on an impurity which interacts with the gas. I show how this system can be used to observe the so-called orthogonality catastrophe using modern interferometry techniques. In the next chapter I present a simple scheme to create superposition states of particles with special emphasis on the NOON state. I explore the effect of inter-particle interactions in the process and then characterise the usefulness of these states for interferometry. Finally I present my contribution to a project on long distance entanglement generation in ion chains. I show how carefully tuning the environment can create decoherence-free subspaces which allows one to create and preserve entanglement.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We review the physics of hybrid optomechanical systems consisting of a mechanical oscillator interacting with both a radiation mode and an additional matterlike system. We concentrate on the cases embodied by either a single or a multi-atom system (a Bose-Einstein condensate, in particular) and discuss a wide range of physical effects, from passive mechanical cooling to the set-up of multipartite entanglement, from optomechanical nonlocality to the achievement of non-classical states of a single mechanical mode. The reviewed material showcases the viability of hybridised cavity optomechanical systems as basic building blocks for quantum communication networks and quantum state-engineering devices, possibly empowered by the use of quantum and optimal control techniques. The results that we discuss are instrumental to the promotion of hybrid optomechanical devices as promising experimental platforms for the study of nonclassicality at the genuine mesoscopic level.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We outline a toolbox comprised of passive optical elements, single photon detection and superpositions of coherent states (Schrodinger cat states). Such a toolbox is a powerful collection of primitives for quantum information processing tasks. We illustrate its use by outlining a proposal for universal quantum computation. We utilize this toolbox for quantum metrology applications, for instance weak force measurements and precise phase estimation. We show in both these cases that a sensitivity at the Heisenberg limit is achievable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Maintaining quantum coherence is a crucial requirement for quantum computation; hence protecting quantum systems against their irreversible corruption due to environmental noise is an important open problem. Dynamical decoupling (DD) is an effective method for reducing decoherence with a low control overhead. It also plays an important role in quantum metrology, where, for instance, it is employed in multiparameter estimation. While a sequence of equidistant control pulses the Carr-Purcell-Meiboom-Gill (CPMG) sequence] has been ubiquitously used for decoupling, Uhrig recently proposed that a nonequidistant pulse sequence the Uhrig dynamic decoupling (UDD) sequence] may enhance DD performance, especially for systems where the spectral density of the environment has a sharp frequency cutoff. On the other hand, equidistant sequences outperform UDD for soft cutoffs. The relative advantage provided by UDD for intermediate regimes is not clear. In this paper, we analyze the relative DD performance in this regime experimentally, using solid-state nuclear magnetic resonance. Our system qubits are C-13 nuclear spins and the environment consists of a H-1 nuclear spin bath whose spectral density is close to a normal (Gaussian) distribution. We find that in the presence of such a bath, the CPMG sequence outperforms the UDD sequence. An analogy between dynamical decoupling and interference effects in optics provides an intuitive explanation as to why the CPMG sequence performs better than any nonequidistant DD sequence in the presence of this kind of environmental noise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The negatively charged nitrogen-vacancy centre in diamond is a unique defect centre in diamond that possesses properties highly suited to many applications, including quantum information processing, quantum metrology, and biolabelling. Although the unique properties of the centre have been extensively documented and utilised, a detailed understanding of the physics of the centre has not yet been achieved. Indeed there persists a number of points of contention regarding the electronic structure of the centre, such as the ordering of the dark intermediate singlet states. Without a sound model of the centre’s electronic structure, the understanding of the system’s unique dynamical properties can not effectively progress. In this work, the molecular model of the defect centre is fully developed to provide a self consistent model of the complete electronic structure of the centre. The application of the model to describe the effects of electric, magnetic and strain interactions, as well as the variation of the centre’s fine structure with temperature, provides an invaluable tool to those studying the centre and a means to design future experiments and ab initio studies of this important defect centre.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The transfer of entanglement from optical fields to qubits provides a viable approach to entangling remote qubits in a quantum network. In cavity quantum electrodynamics, the scheme relies on the interaction between a photonic resource and two stationary intracavity atomic qubits. However, it might be hard in practice to trap two atoms simultaneously and synchronize their coupling to the cavities. To address this point, we propose and study entanglement transfer from cavities driven by an entangled external field to controlled flying qubits. We consider two exemplary non-Gaussian driving fields: NOON and entangled coherent states. We show that in the limit of long coherence time of the cavity fields, when the dynamics is approximately unitary, entanglement is transferred from the driving field to two atomic qubits that cross the cavities. On the other hand, a dissipation-dominated dynamics leads to very weakly quantum-correlated atomic systems, as witnessed by vanishing quantum discord.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the dynamics of two interacting bosons repeatedly scattering off a beam-splitter in a free oscillation atom interferometer. Using the interparticle scattering length and the beam-splitter probabilites as our control parameters, we show that even in a simple setup like this a wide range of strongly correlated quantum states can be created. This in particular includes the NOON state, which maximizes the quantum Fisher information and is a foremost state in quantum metrology. DOI: 10.1103/PhysRevA.87.043630

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The precise knowledge of the temperature of an ultracold lattice gas simulating a strongly correlated
system is a question of both fundamental and technological importance. Here, we address such
question by combining tools from quantum metrology together with the study of the quantum
correlations embedded in the system at finite temperatures. Within this frame we examine the spin-
1 2 XY chain, first estimating, by means of the quantum Fisher information, the lowest attainable
bound on the temperature precision. We then address the estimation of the temperature of the sample
from the analysis of correlations using a quantum non demolishing Faraday spectroscopy method.
Remarkably, our results show that the collective quantum correlations can become optimal
observables to accurately estimate the temperature of our model in a given range of temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Working with nuclear magnetic resonance (NMR) in quadrupolar spin systems, in this paper we transfer the concept of atomic coherent state to the nuclear spin context, where it is referred to as pseudonuclear spin coherent state (pseudo-NSCS). Experimentally, we discuss the initialization of the pseudo- NSCSs and also their quantum control, implemented by polar and azimuthal rotations. Theoretically, we compute the geometric phases acquired by an initial pseudo-NSCS on undergoing three distinct cyclic evolutions: (i) the free evolution of the NMR quadrupolar system and, by analogy with the evolution of the NMR quadrupolar system, that of (ii) single-mode and (iii) two-mode Bose-Einstein Condensate like system. By means of these analogies, we derive, through spin angular momentum operators, results equivalent to those presented in the literature for orbital angular momentum operators. The pseudo-NSCS description is a starting point to introduce the spin squeezed state and quantum metrology into nuclear spin systems of liquid crystal or solid matter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quantum channel identification, a standard problem in quantum metrology, is the task of estimating parameter(s) of a quantum channel. We investigate dissonance (quantum discord in the absence of entanglement) as an aid to quantum channel identification and find evidence for dissonance as a resource for quantum information processing. We consider the specific case of dissonant Bell-diagonal probes of the qubit depolarizing channel, using quantum Fisher information as a measure of statistical information extracted by the probe. In this setting dissonant quantum probes yield more statistical information about the depolarizing probability than do corresponding probes without dissonance and greater dissonance yields greater information. This effect only operates consistently when we control for classical correlation between the probe and its ancilla and the joint and marginal purities of the ancilla and probe.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a method to verify the metrological usefulness of noisy Dicke states of a particle ensemble with only a few collective measurements, without the need for a direct measurement of the sensitivity. Our method determines the usefulness of the state for the usual protocol for estimating the angle of rotation with Dicke states, which is based on the measurement of the second moment of a total spin component. It can also be used to detect entangled states that are useful for quantum metrology. We apply our method to recent experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-classical properties and quantum interference (QI) in two-photon excitation of a three level atom (|1〉), |2〉, |3〉) in a ladder configuration, illuminated by multiple fields in non-classical (squeezed) and/or classical (coherent) states, is studied. Fundamentally new effects associated with quantum correlations in the squeezed fields and QI due to multiple excitation pathways have been observed. Theoretical studies and extrapolations of these findings have revealed possible applications which are far beyond any current capabilities, including ultrafast nonlinear mixing, ultrafast homodyne detection and frequency metrology. The atom used throughout the experiments was Cesium, which was magneto-optically trapped in a vapor cell to produce a Doppler-free sample. For the first part of the work the |1〉 → |2〉 → |3〉 transition (corresponding to the 6S1/2F = 4 → 6P3/2F' = 5 → 6D5/2F" = 6 transition) was excited by using the quantum-correlated signal (Ɛs) and idler (Ɛi) output fields of a subthreshold non-degenerate optical parametric oscillator, which was tuned so that the signal and idler fields were resonant with the |1〉 → |2〉 and |2〉 → |3〉 transitions, respectively. In contrast to excitation with classical fields for which the excitation rate as a function of intensity has always an exponent greater than or equal to two, excitation with squeezed-fields has been theoretically predicted to have an exponent that approaches unity for small enough intensities. This was verified experimentally by probing the exponent down to a slope of 1.3, demonstrating for the first time a purely non-classical effect associated with the interaction of squeezed fields and atoms. In the second part excitation of the two-photon transition by three phase coherent fields Ɛ1 , Ɛ2 and Ɛ0, resonant with the dipole |1〉 → |2〉 and |2〉 → |3〉 and quadrupole |1〉 → |3〉 transitions, respectively, is studied. QI in the excited state population is observed due to two alternative excitation pathways. This is equivalent to nonlinear mixing of the three excitation fields by the atom. Realizing that in the experiment the three fields are spaced in frequency over a range of 25 THz, and extending this scheme to other energy triplets and atoms, leads to the discovery that ranges up to 100's of THz can be bridged in a single mixing step. Motivated by these results, a master equation model has been developed for the system and its properties have been extensively studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum key distribution (QKD) promises secure key agreement by using quantum mechanical systems. We argue that QKD will be an important part of future cryptographic infrastructures. It can provide long-term confidentiality for encrypted information without reliance on computational assumptions. Although QKD still requires authentication to prevent man-in-the-middle attacks, it can make use of either information-theoretically secure symmetric key authentication or computationally secure public key authentication: even when using public key authentication, we argue that QKD still offers stronger security than classical key agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following an early claim by Nelson & McEvoy suggesting that word associations can display `spooky action at a distance behaviour', a serious investigation of the potentially quantum nature of such associations is currently underway. In this paper quantum theory is proposed as a framework suitable for modelling the mental lexicon, specifically the results obtained from both intralist and extralist word association experiments. Some initial models exploring this hypothesis are discussed, and they appear to be capable of substantial agreement with pre-existing experimental data. The paper concludes with a discussion of some experiments that will be performed in order to test these models.