999 resultados para QTL X E
Resumo:
Four of the 12 major Glycine max ancestors of all modern elite U.S.A. soybean cultivars were the grandparents of Harosoy and Clark, so a Harosoy x Clark population would include some of that genetic diversity. A mating of eight Harosoy and eight Clark plants generated eight F1 plants. The eight F1:2 families were advanced via a plant-to-row selfing method to produce 300 F6-derived RILs that were genotyped with 266 SSR, 481 SNP, and 4 classical markers. SNPs were genotyped with the Illumina 1536-SNP assay. Three linkage maps, SSR, SNP, and SSR-SNP, were constructed with a genotyping error of < 1 %. Each map was compared with the published soybean consensus map. The best subset of 94 RILs for a high-resolution framework (joint) map was selected based on the expected bin length statistic computed with MapPop. The QTLs of seven traits measured in a 2-year replicated performance trial of the 300 RILs were identified using composite interval mapping (CIM) and multiple-interval mapping (MIM). QTL x Year effects in multiple trait analysis were compared with results of multiple-interval mapping. QTL x QTL effects were identified in MIM.
Resumo:
Sugarcane-breeding programs take at least 12 years to develop new commercial cultivars. Molecular markers offer a possibility to study the genetic architecture of quantitative traits in sugarcane, and they may be used in marker-assisted selection to speed up artificial selection. Although the performance of sugarcane progenies in breeding programs are commonly evaluated across a range of locations and harvest years, many of the QTL detection methods ignore two- and three-way interactions between QTL, harvest, and location. In this work, a strategy for QTL detection in multi-harvest-location trial data, based on interval mapping and mixed models, is proposed and applied to map QTL effects on a segregating progeny from a biparental cross of pre-commercial Brazilian cultivars, evaluated at two locations and three consecutive harvest years for cane yield (tonnes per hectare), sugar yield (tonnes per hectare), fiber percent, and sucrose content. In the mixed model, we have included appropriate (co)variance structures for modeling heterogeneity and correlation of genetic effects and non-genetic residual effects. Forty-six QTLs were found: 13 QTLs for cane yield, 14 for sugar yield, 11 for fiber percent, and 8 for sucrose content. In addition, QTL by harvest, QTL by location, and QTL by harvest by location interaction effects were significant for all evaluated traits (30 QTLs showed some interaction, and 16 none). Our results contribute to a better understanding of the genetic architecture of complex traits related to biomass production and sucrose content in sugarcane.
Resumo:
Background: Common bean (Phaseolus vulgaris L.) is the most important grain legume for human diet worldwide and the angular leaf spot (ALS) is one of the most devastating diseases of this crop, leading to yield losses as high as 80%. In an attempt to breed resistant cultivars, it is important to first understand the inheritance mode of resistance and to develop tools that could be used in assisted breeding. Therefore, the aim of this study was to identify quantitative trait loci (QTL) controlling resistance to ALS under natural infection conditions in the field and under inoculated conditions in the greenhouse. Results: QTL analyses were made using phenotypic data from 346 recombinant inbreed lines from the IAC-UNA x CAL 143 cross, gathered in three experiments, two of which were conducted in the field in different seasons and one in the greenhouse. Joint composite interval mapping analysis of QTL x environment interaction was performed. In all, seven QTLs were mapped on five linkage groups. Most of them, with the exception of two, were significant in all experiments. Among these, ALS10.1(DG,UC) presented major effects (R-2 between 16% - 22%). This QTL was found linked to the GATS11b marker of linkage group B10, which was consistently amplified across a set of common bean lines and was associated with the resistance. Four new QTLs were identified. Between them the ALS5.2 showed an important effect (9.4%) under inoculated conditions in the greenhouse. ALS4.2 was another major QTL, under natural infection in the field, explaining 10.8% of the variability for resistance reaction. The other QTLs showed minor effects on resistance. Conclusions: The results indicated a quantitative inheritance pattern of ALS resistance in the common bean line CAL 143. QTL x environment interactions were observed. Moreover, the major QTL identified on linkage group B10 could be important for bean breeding, as it was stable in all the environments. Thereby, the GATS11b marker is a potential tool for marker assisted selection for ALS resistance.
Resumo:
O objetivo deste trabalho foi selecionar famílias de feijoeiro-comum, com alta produtividade de grãos, por meio de seleção fenotípica e de seleção assistida por marcadores moleculares (SAM). Foram avaliadas 394 famílias, de quatro populações, e seus seis genitores, no Município de Lavras, em dois experimentos: um na geração F3:4, na safra das águas de 2005/2006, em látice simples 20x20; e outro na geração F3:5, na safra da seca de 2006, em látice triplo 20x20. Foram estimados parâmetros genéticos e fenotípicos, e foi realizada a genotipagem das famílias, com marcadores microssatélites associados a QTL controladores da produção de grãos, previamente identificados. Também foram realizadas análises de associação por marcas simples, entre os marcadores e a produção de grãos, e foi obtido um índice para a SAM. A ampla variabilidade entre famílias e as altas estimativas de herdabilidade possibilitaram obter elevados ganhos com a seleção fenotípica. Os marcadores explicaram pequena percentagem da variação fenotípica e apresentaram alta interação QTL x ambiente e QTL x população. A SAM gerou baixos ganhos e a coincidência de famílias selecionadas pelas duas metodologias foi baixa, o que evidencia, neste caso, a ineficiência da SAM, principalmente pela pouca disponibilidade de marcadores ligados a QTL.
Resumo:
The objective of this work was to evaluate the yield performance of two generations (BC2F2 and BC2F9) of introgression lines developed from the interspecific cross between Oryza sativa and O. glumaepatula, and to identify the SSR markers associated to yield. The wild accession RS‑16 (O. glumaepatula) was used as donor parent in the backcross with the high yielding cultivar Cica‑8 (O. sativa). A set of 114 BC2F1 introgression lines was genotyped with 141 polymorphic SSR loci distributed across the whole rice genome. Molecular analysis showed that in average 22% of the O. glumaepatula genome was introgressed into BC2F1 generation. Nine BC2F9 introgression lines had a significantly higher yield than the genitor Cica‑8, thus showing a positive genome interaction among cultivated rice and the wild O. glumaepatula. Seven QTL were identified in the overall BC2F2, with one marker interval (4879‑EST20) of great effect on yield. The alleles with positive effect on yield came from the cultivated parent Cica‑8.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Targeting between-species effects for improvement in synthetic hybrid populations derived from outcrossing parental tree species may be one way to increase the efficacy and predictability of hybrid breeding. We present a comparative analysis of the quantitative trait loci (QTL) which resolved between from within-species effects for adventitious rooting in two populations of hybrids between Pinus elliottii and P. caribaea, an outbred F-1 (n=287) and an inbred-like F-2 family (n=357). Most small to moderate effect QTL (each explaining 2-5% of phenotypic variation, PV) were congruent (3 out of 4 QTL in each family) and therefore considered within-species effects as they segregated in both families. A single large effect QTL (40% PV) was detected uniquely in the F-2 family and assumed to be due to a between-species effect, resulting from a genetic locus with contrasting alleles in each parental species. Oligogenic as opposed to polygenic architecture was supported in both families (60% and 20% PV explained by 4 QTL in the F-2 and F-1 respectively). The importance of adventitious rooting for adaptation to survive water-logged environments was thought in part to explain oligogenic architecture of what is believed to be a complex trait controlled by many hundreds of genes.
Resumo:
QTL mapping provides usefull information for breeding programs since it allows the estimation of genomic locations and genetic effects of chromossomal regions related to the expression of quantitative traits. The objective of this study was to map QTL related to several agronomic important traits associated with grain yield: ear weight (EW), prolificacy (PROL), ear number (NE), ear length (EL) and diameter (ED), number of rows on the ear (NRE) and number of kernels per row on the ear (NKPR). Four hundred F-2:3 tropical maize progenies were evaluated in five environments in Piracicaba, Sao Paulo, Brazil. The genetic map was previously estimated and had 117 microssatelite loci with average distance of 14 cM. Data was analysed using Composite Interval Mapping for each trait. Thirty six QTL were mapped and related to the expression of EW (2), PROL (3), NE (2), EL (5), ED (5), NRE (10), NKPR (5). Few QTL were mapped since there was high GxE interaction. Traits EW, PROL and EN showed high genetic correlation with grain yield and several QTL mapped to similar genomic regions, which could cause the observed correlation. However, further analysis using apropriate statistical models are required to separate linked versus pleiotropic QTL. Five QTL (named Ew1, Ne1, Ed3, Nre3 and Nre10) had high genetic effects, explaining from 10.8% (Nre3) to 16.9% (Nre10) of the phenotypic variance, and could be considered in further studies.
Resumo:
Background : In tropical countries, losses caused by bovine tick Rhipicephalus (Boophilus) microplus infestation have a tremendous economic impact on cattle production systems. Genetic variation between Bos taurus and Bos indicus to tick resistance and molecular biology tools might allow for the identification of molecular markers linked to resistance traits that could be used as an auxiliary tool in selection programs. The objective of this work was to identify QTL associated with tick resistance/susceptibility in a bovine F2 population derived from the Gyr (Bos indicus) x Holstein (Bos taurus) cross. Results: Through a whole genome scan with microsatellite markers, we were able to map six genomic regions associated with bovine tick resistance. For most QTL, we have found that depending on the tick evaluation season (dry and rainy) different sets of genes could be involved in the resistance mechanism. We identified dry season specific QTL on BTA 2 and 10, rainy season specific QTL on BTA 5, 11 and 27. We also found a highly significant genome wide QTL for both dry and rainy seasons in the central region of BTA 23. Conclusions: The experimental F2 population derived from Gyr x Holstein cross successfully allowed the identification of six highly significant QTL associated with tick resistance in cattle. QTL located on BTA 23 might be related with the bovine histocompatibility complex. Further investigation of these QTL will help to isolate candidate genes involved with tick resistance in cattle.
Resumo:
Phaeosphaeria leaf spot (PLS) is an important disease in tropical and subtropical maize (Zea mays, L.) growing areas, but there is limited information on its inheritance. Thus, this research was conducted to study the inheritance of the PLS disease in tropical maize by using QTL mapping and to assess the feasibility of using marker-assisted selection aimed to develop genotypes resistance to this disease. Highly susceptible L14-04B and highly resistant L08-05F inbred lines were crossed to develop an F(2) population. Two-hundred and fifty six F(2) plants were genotyped with 143 microsatellite markers and their F(2:3) progenies were evaluated at seven environments. Ten plants per plot were evaluated 30 days after silk emergence following a rating scale, and the plot means were used for analyses. The heritability coefficient on a progeny mean basis was high (91.37%), and six QTL were mapped, with one QTL on chromosomes 1, 3, 4, and 6, and two QTL on chromosome 8. The gene action of the QTL ranged from additive to partial dominance, and the average level of dominance was partial dominance; also a dominance x dominance epistatic effect was detected between the QTL mapped on chromosome 8. The phenotypic variance explained by each QTL ranged from 2.91 to 11.86%, and the joint QTL effects explained 41.62% of the phenotypic variance. The alleles conditioning resistance to PLS disease of all mapped QTL were in the resistant parental inbred L08-05F. Thus, these alleles could be transferred to other elite maize inbreds by marker-assisted backcross selection to develop hybrids resistant to PLS disease.
Genetic basis of adaptation in Arabidopsis thaliana: local adaptation at the seed dormancy QTL DOG1.
Resumo:
Local adaptation provides an opportunity to study the genetic basis of adaptation and investigate the allelic architecture of adaptive genes. We study delay of germination 1 (DOG1), a gene controlling natural variation in seed dormancy in Arabidopsis thaliana and investigate evolution of dormancy in 41 populations distributed in four regions separated by natural barriers. Using F(ST) and Q(ST) comparisons, we compare variation at DOG1 with neutral markers and quantitative variation in seed dormancy. Patterns of genetic differentiation among populations suggest that the gene DOG1 contributes to local adaptation. Although Q(ST) for seed dormancy is not different from F(ST) for neutral markers, a correlation with variation in summer precipitation supports that seed dormancy is adaptive. We characterize dormancy variation in several F(2) -populations and show that a series of functionally distinct alleles segregate at the DOG1 locus. Theoretical models have shown that the number and effect of alleles segregatin at quantitative trait loci (QTL) have important consequences for adaptation. Our results provide support to models postulating a large number of alleles at quantitative trait loci involved in adaptation.
Resumo:
O objetivo deste trabalho foi selecionar populações segregantes de feijoeiro promissoras para a produtividade de grãos e com polimorfismo para marcadores microssatélites ligados a QTL relacionados previamente à produtividade de grãos. Foram utilizadas 49 linhagens, avaliadas em dois experimentos em látice triplo. Sete linhagens foram selecionadas e intercruzadas no esquema dialélico e também genotipadas com 24 marcadores microssatélites ligados a QTL previamente identificados. As populações foram avaliadas em blocos completos casualizados, com três repetições. Foram observadas diferenças significativas entre as capacidades gerais (CGC) e específicas de combinação (CEC) e os efeitos não-aditivos foram mais pronunciados. As linhagens RC1-10 e Z-9 se destacaram em razão das elevadas estimativas de g i. Entre os microssatélites, 25% foram polimórficos. Foram selecionadas quatro populações para a seleção de famílias com base na avaliação das linhagens, na análise dialélica e no polimorfismo entre os marcadores microssatélites. Destacou-se a população RC1-10 x Z-9, formada por genitores de alta CGC, com alta média e CEC e ainda grãos do tipo Carioca. Considerando o baixo número de microssatélites polimórficos obtidos nas populações, pode-se concluir haver necessidade de utilização de maior número de microssatélites ligados a QTL da produção de grãos.
Resumo:
O objetivo deste trabalho foi avaliar eficiência de modelos de regressão aleatória (MRA) para detectar locus de características quantitativas (QTL) para características de crescimento, em suínos. Utilizou-se uma população divergente F2 Piau x Comercial. A eficiência da metodologia proposta na detecção de QTL foi comparada à da metodologia tradicional de regressão por intervalo de mapeamento. Para tanto, utilizaram-se MRA com efeitos aleatórios poligênicos, de ambiente permanente e de QTL, tendo-se utilizado o enfoque de matriz de covariância "identical‑by‑descent" associada aos efeitos de QTL. Testou-se a significância dos efeitos de QTL mediante a razão de verossimilhanças, tendo-se considerado o modelo como completo quando houve efeito de QTL, ou nulo, quando não. A comparação entre os modelos foi feita nas posições dos marcadores (seis marcadores microssatélites) e nas intermediárias, entre os marcadores. O MRA detectou QTL significativo na posição 65 cM do cromossomo 7 e, portanto, foi mais eficiente que a metodologia tradicional, que não detectou QTL significativo em nenhum dos fenótipos avaliados. A metodologia proposta possibilitou a detecção de QTL com efeito sobre toda a trajetória de crescimento, dentro da amplitude de idade considerada (do nascimento aos 150 dias).
Resumo:
The present work aimed to characterize and identify QTLs for wood quality and growth traits in E. grandis x E. urophylla hybrids. For this purpose a RAPD linkage map was developed for the hybrids (LOD=3 and r=0.40) containing 52 markers and 12 linkage groups. Traits related to wood quality and growth were evaluated in the QTL analyses. QTL analyses were performed using chi-square tests, single-marker, interval mapping and composite interval mapping analyses. All approaches led to the identification of similar QTLs associated with wood density, cellulose pulp yield and percentage of extractives, which were detected and confirmed by both the interval mapping and composite interval mapping methodologies. Some QTLs regions were confirmed only by the composite interval mapping methodology: percentage of soluble lignin, percentage of insoluble lignin, CBH and total height. Overlapping QTLs regions were detected, and these, can be the result of major genes involved in the regulation and control of the growth traits by epistatic interactions. In order to evaluate the effect of early selection using RAPD molecular data, molecular markers adjacent to QTLs were used genotype selection. The analysis of selection differential values suggests that for all the traits the phenotypic selection at seven years should generate larger genetic gains than early selection assisted by molecular markers and the combination of the strategies should elevate the selection efficiency.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)