999 resultados para QSAR study
Resumo:
A set of sixteen para-substituted N,N-[(dimethylamino)ethyl] benzoate hydrochlorides structurally related to procaine was synthesized. The apparent partition coefficients were determined by either shake-flask or HPLC methods and were taken as hydrophobic parameters. The IR stretching frequencies of the carbonyl group were determined in chloroform and taken as one of the electronic parameters. Additional physicochemical parameters were either taken from the literature: pi, sigma, T and R, MR4, or calculated: log P. The lethal potency was determined in the mouse via the LD50. In order to verify the nature and the relative contributions of the physicochemical parameters to lethal toxicity, QSAR equations were derived using regression analysis. A major contribution of hydrophobicity to ether with a smaller but still significant contribution of electronic or polar properties was found to a describe the toxicity within this set of compounds.
Resumo:
A series of C-3 alkyl and arylalky 2,3-dideoxy hex-2-enopyranoside derivatives were synthesized by Morita-Baylis-Hillman reaction using enulosides 4, 5 and 6 and various aliphatic and aromatic aldehydes. The compounds were evaluated in vitro for the complete inhibition of growth of Mycobacterium tuberculosis H37Rv. They exhibited moderate to good activity in the range of 25-1.56 µg/mL. Among these, 4d, 4h, 5c and 4hr showed activity at minimum inhibitory concentrations, 3.12, 6.25, 1.56 and 1.56µg/mL, respectively. These compounds were safe against cytotoxicity in VERO cell line and mouse macrophage cell line J 744A.1. A QSAR analysis by CP-MLR with alignment-free 3D-descriptors indicated the relevance of structure space comparable to the minimum energy conformation (from conformational analysis) of 5c to the activity. The study indicates that the compounds attaining conformational space 5c and reflecting some symmetry, minimum eccentricity and closely placed geometric and electronegativity centers therein are favorable for activity.
Resumo:
A quantitative structure-activity relationship (QSAR) study of 19 quinone compounds with trypanocidal activity was performed by Partial Least Squares (PLS) and Principal Component Regression (PCR) methods with the use of leave-one-out crossvalidation procedure to build the regression models. The trypanocidal activity of the compounds is related to their first cathodic potential (Ep(c1)). The regression PLS and PCR models built in this study were also used to predict the Ep(c1) of six new quinone compounds. The PLS model was built with three principal components that described 96.50% of the total variance and present Q(2) = 0.83 and R-2 = 0.90. The results obtained with the PCR model were similar to those obtained with the PLS model. The PCR model was also built with three principal components that described 96.67% of the total variance with Q(2) = 0.83 and R-2 = 0.90. The most important descriptors for our PLS and PCR models were HOMO-1 (energy of the molecular orbital below HOMO), Q4 (atomic charge at position 4), MAXDN (maximal electrotopological negative difference), and HYF (hydrophilicity index).
Resumo:
The antimycobacterial activity of nitro/ acetamido alkenol derivatives and chloro/ amino alkenol derivatives has been analyzed through combinatorial protocol in multiple linear regression (CP-MLR) using different topological descriptors obtained from Dragon software. Among the topological descriptor classes considered in the study, the activity is correlated with simple topological descriptors (TOPO) and more complex 2D autocorrelation descriptors (2DAUTO). In model building the descriptors from other classes, that is, empirical, constitutional, molecular walk counts, modified Burden eigenvalues and Galvez topological charge indices have made secondary contribution in association with TOPO and / or 2DAUTO classes. The structure-activity correlations obtained with the TOPO descriptors suggest that less branched and saturated structural templates would be better for the activity. For both the series of compounds, in 2DAUTO the activity has been correlated to the descriptors having mass, volume and/ or polarizability as weighting component. In these two series of compounds, however, the regression coefficients of the descriptors have opposite arithmetic signs with respect to one another. Outwardly these two series of compounds appear very similar. But in terms of activity they belong to different segments of descriptor-activity profiles. This difference in the activity of these two series of compounds may be mainly due to the spacing difference between the C1 (also C6) substituents and rest of the functional groups in them.
Resumo:
The HIV-1 RT inhibitory activity of 2-(2,6-dihalophenyl)-3-(substituted pyridin-2-yl)-thiazolidin-4-ones has been analyzed with different topological descriptors obtained from DRAGON software. Here, simple topological descriptors (TOPO), Galvez topological charge indices (GVZ) and 2D autocorrelation descriptors (2DAUTO) have been found to yield good predictive models for the activity of these compounds. The correlations obtained from the TOPO class descriptors suggest that less extended or compact saturated structural templates would be better for the activity. The participating GVZ class descriptors suggest that they have same degree of influence on the activity. In 2DAUTO class, the large participation of descriptors of lags seven and three indicate the association of activity information with the seven and three centered structural fragments of these compounds. The physicochemical weighting components of these descriptors suggest homogeneous influence of mass, volume, electronegativity and/ or polarizability on the activity.
Resumo:
In this study, twenty hydroxylated and acetoxylated 3-phenylcoumarin derivatives were evaluated as inhibitors of immune complex-stimulated neutrophil oxidative metabolism and possible modulators of the inflammatory tissue damage found in type III hypersensitivity reactions. By using lucigenin- and luminol-enhanced chemiluminescence assays (CL-luc and CL-lum, respectively), we found that the 6,7-dihydroxylated and 6,7-diacetoxylated 3-phenylcoumarin derivatives were the most effective inhibitors. Different structural features of the other compounds determined CL-luc and/or CL-lum inhibition. The 2D-QSAR analysis suggested the importance of hydrophobic contributions to explain these effects. In addition, a statistically significant 3D-QSAR model built applying GRIND descriptors allowed us to propose a virtual receptor site considering pharmacophoric regions and mutual distances. Furthermore, the 3-phenylcoumarins studied were not toxic to neutrophils under the assessed conditions. (C) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
Tuberculosis (TB) is a worldwide infectious disease that has shown over time extremely high mortality levels. The urgent need to develop new antitubercular drugs is due to the increasing rate of appearance of multi-drug resistant strains to the commonly used drugs, and the longer durations of therapy and recovery, particularly in immuno-compromised patients. The major goal of the present study is the exploration of data from different families of compounds through the use of a variety of machine learning techniques so that robust QSAR-based models can be developed to further guide in the quest for new potent anti-TB compounds. Eight QSAR models were built using various types of descriptors (from ADRIANA.Code and Dragon software) with two publicly available structurally diverse data sets, including recent data deposited in PubChem. QSAR methodologies used Random Forests and Associative Neural Networks. Predictions for the external evaluation sets obtained accuracies in the range of 0.76-0.88 (for active/inactive classifications) and Q(2)=0.66-0.89 for regressions. Models developed in this study can be used to estimate the anti-TB activity of drug candidates at early stages of drug development (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
En aquest treball es presenta un exemple d'aplicació de la semblança molecular quàntica en l'àmbit de la determinació de relacions entre l'estructura i les propietats o activitats biològiques de molècules. La família estudiada està formada per un conjunt de divuit quinolones de les quals es coneixen dues propietats relacionades amb l'activitat biològica: la concentració mínima inhibitòria de la reproducció en E. Coli i I'escissió de l'ADN per la girasa, també en E. Coli. L'estudi s'ha realitzat emprant dues metodologies diferents, fonamentades ambdues en el desenvolupament de la semblança molecular quàntica. Aquestes dues metodologies es basen, respectivament, en el càlcul i l'aplicació dels índexs de semblança i dels índexs topològics de semblança
Resumo:
A new model for the H2 antagonists binding site is postulated based on adsorption coefficient values of sixteen antagonists, in the affinities constants of the primary and secondary binding sites, and in the chemical characterization of these sites by 3D-QSAR. All study compounds are in the extended conformation and deprotonated form. The lateral validation of the QSARs, CoMFA analysis, affinity constants and chemical similarity data suggest that the antagonists block the proton pump in the H2 receptor interacting with two tyrosines - one in the helix 5, and other in the helix 6.
Resumo:
En aquest treball es presenta un exemple d'aplicació de la semblança molecular quàntica en l'àmbit de la determinació de relacions entre l'estructura i les propietats o activitats biològiques de molècules. La família estudiada està formada per un conjunt de divuit quinolones de les quals es coneixen dues propietats relacionades amb l'activitat biològica: la concentració mínima inhibitòria de la reproducció en E. Coli i I'escissió de l'ADN per la girasa, també en E. Coli. L'estudi s'ha realitzat emprant dues metodologies diferents, fonamentades ambdues en el desenvolupament de la semblança molecular quàntica. Aquestes dues metodologies es basen, respectivament, en el càlcul i l'aplicació dels índexs de semblança i dels índexs topològics de semblança
Structure-Based Approach for the Study of Estrogen Receptor Binding Affinity and Subtype Selectivity
Resumo:
Estrogens exert important physiological effects through the modulation of two human estrogen receptor (hER) subtypes, alpa (hER alpha) and beta (hER beta). Because the levels and relative proportion of hER alpha and hER beta differ significantly in different target cells, selective hER ligands could target specific tissues or pathways regulated by one receptor subtype without affecting the other. To understand the structural and chemical basis by which small molecule modulators are able to discriminate between the two subtypes, we have applied three-dimensional target-based approaches employing a series of potent hER-ligands. Comparative molecular field analysis (CoMFA) studies were applied to a data set of 81 hER modulators, for which binding affinity values were collected for both hER alpha and hER beta. Significant statistical coefficients were obtained (hER alpha, q(2) = 0.76; hER beta, q(2) = 0.70), indicating the internal consistency of the models. The generated models were validated using external test sets, and the predicted values were in good agreement with the experimental results. Five hER crystal structures were used in GRID/PCA investigations to generate molecular interaction fields (MIF) maps. hER alpha and hER beta were separated using one factor. The resulting 3D information was integrated with the aim of revealing the most relevant structural features involved in hER subtype selectivity. The final QSAR and GRID/PCA models and the information gathered from 3D contour maps should be useful for the design or novel hER modulators with improved selectivity.
Resumo:
5-HT(1A) receptor antagonists have been employed to treat depression, but the lack of structural information on this receptor hampers the design of specific and selective ligands. In this study, we have performed CoMFA studies on a training set of arylpiperazines (high affinity 5-HT(1A) receptor ligands) and to produce an effective alignment of the data set, a pharmacophore model was produced using Galahad. A statistically significant model was obtained, indicating a good internal consistency and predictive ability for untested compounds. The information gathered from our receptor-independent pharmacophore hypothesis is in good agreement with results from independent studies using different approaches. Therefore, this work provides important insights on the chemical and structural basis involved in the molecular recognition of these compounds. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Alzheimer`s disease is an ultimately fatal neurodegenerative disease, and BACE-1 has become an attractive validated target for its therapy, with more than a hundred crystal structures deposited in the PDB. In the present study, we present a new methodology that integrates ligand-based methods with structural information derived from the receptor. 128 BACE-1 inhibitors recently disclosed by GlaxoSmithKline R&D were selected specifically because the crystal structures of 9 of these compounds complexed to BACE-1, as well as five closely related analogs, have been made available. A new fragment-guided approach was designed to incorporate this wealth of structural information into a CoMFA study, and the methodology was systematically compared to other popular approaches, such as docking, for generating a molecular alignment. The influence of the partial charges calculation method was also analyzed. Several consistent and predictive models are reported, including one with r (2) = 0.88, q (2) = 0.69 and r (pred) (2) = 0.72. The models obtained with the new methodology performed consistently better than those obtained by other methodologies, particularly in terms of external predictive power. The visual analyses of the contour maps in the context of the enzyme drew attention to a number of possible opportunities for the development of analogs with improved potency. These results suggest that 3D-QSAR studies may benefit from the additional structural information added by the presented methodology.
Resumo:
In order to extend previous SAR and QSAR studies, 3D-QSAR analysis has been performed using CoMFA and CoMSIA approaches applied to a set of 39 alpha-(N)-heterocyclic carboxaldehydes thiosemicarbazones with their inhibitory activity values (IC(50)) evaluated against ribonucleotide reductase (RNR) of H.Ep.-2 cells (human epidermoid carcinoma), taken from selected literature. Both rigid and field alignment methods, taking the unsubstituted 2-formylpyridine thiosemicarbazone in its syn conformation as template, have been used to generate multiple predictive CoMFA and CoMSIA models derived from training sets and validated with the corresponding test sets. Acceptable predictive correlation coefficients (Q(cv)(2) from 0.360 to 0.609 for CoMFA and Q(cv)(2) from 0.394 to 0.580 for CoMSIA models) with high fitted correlation coefficients (r` from 0.881 to 0.981 for CoMFA and r(2) from 0.938 to 0.993 for CoMSIA models) and low standard errors (s from 0.135 to 0.383 for CoMFA and s from 0.098 to 0.240 for CoMSIA models) were obtained. More precise CoMFA and CoMSIA models have been derived considering the subset of thiosemicarbazones (TSC) substituted only at 5-position of the pyridine ring (n=22). Reasonable predictive correlation coefficients (Q(cv)(2) from 0.486 to 0.683 for CoMFA and Q(cv)(2) from 0.565 to 0.791 for CoMSIA models) with high fitted correlation coefficients (r(2) from 0.896 to 0.997 for CoMFA and r(2) from 0.991 to 0.998 for CoMSIA models) and very low standard errors (s from 0.040 to 0.179 for CoMFA and s from 0.029 to 0.068 for CoMSIA models) were obtained. The stability of each CoMFA and CoMSIA models was further assessed by performing bootstrapping analysis. For the two sets the generated CoMSIA models showed, in general, better statistics than the corresponding CoMFA models. The analysis of CoMFA and CoMSIA contour maps suggest that a hydrogen bond acceptor near the nitrogen of the pyridine ring can enhance inhibitory activity values. This observation agrees with literature data, which suggests that the nitrogen pyridine lone pairs can complex with the iron ion leading to species that inhibits RNR. The derived CoMFA and CoMSIA models contribute to understand the structural features of this class of TSC as antitumor agents in terms of steric, electrostatic, hydrophobic and hydrogen bond donor and hydrogen bond acceptor fields as well as to the rational design of this key enzyme inhibitors.
Resumo:
Arylpiperazine compounds are promising 5-HT1A receptor ligands that can contribute for accelerating the onset of therapeutic effect of selective serotonin reuptake inhibitors. In the present work, the chemometric methods HCA, PCA, KNN, SIMCA and PLS were employed in order to obtain SAR and QSAR models relating the structures of arylpiperazine compounds to their 5-HT1A receptor affinities. A training set of 52 compounds was used to construct the models and the best ones were obtained with nine topological descriptors. The classification and regression models were externally validated by means of predictions for a test set of 14 compounds and have presented good quality, as verified by the correctness of classifications, in the case of pattern recognition studies, and b, the high correlation coefficients (q(2) = 0.76, r(2) = 0.83) and small prediction errors for the PLS regression. Since the results are in good agreement with previous SAR studies, we can suggest that these findings can help in the search for 5-HT1A receptor ligands that are able to improve antidepressant treatment. (c) 2007 Elsevier Masson SAS. All rights reserved.