25 resultados para QKD


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To perform Quantum Key Distribution, the mastering of the extremely weak signals carried by the quantum channel is required. Transporting these signals without disturbance is customarily done by isolating the quantum channel from any noise sources using a dedicated physical channel. However, to really profit from this technology, a full integration with conventional network technologies would be highly desirable. Trying to use single photon signals with others that carry an average power many orders of magnitude bigger while sharing as much infrastructure with a conventional network as possible brings obvious problems. The purpose of the present paper is to report our efforts in researching the limits of the integration of QKD in modern optical networks scenarios. We have built a full metropolitan area network testbed comprising a backbone and an access network. The emphasis is put in using as much as possible the same industrial grade technology that is actually used in already installed networks, in order to understand the throughput, limits and cost of deploying QKD in a real network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the 25 years of existence of the first protocol for Quantum Key Distribution, much has been said and expected of what came to be termed as Quantum Cryptography. After all this time, much progress has been done but also the reality check and analysis that naturally comes with maturity is underway. A new panorama is emerging, and the way in which the challenges imposed by market requirements are tackled will determine the fate of Quantum Cryptography. The present paper attempts to frame a reasonable view on the issues of the security and market requirements that QKD should achieve to become a marketable technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discusión y experimentos sobre la integración de QKD en dos tipos de red de telecomunicaciones típicas en área metropolitana: red de backbone y red de acceso GPON.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The security of a passive plug-and-play QKD arrangement in the case of finite (resources) key lengths is analysed. It is assumed that the eavesdropper has full access to the channel so an unknown and untrusted source is assumed. To take into account the security of the BB84 protocol under collective attacks within the framework of quantum adversaries, a full treatment provides the well-known equations for the secure key rate. A numerical simulation keeping a minimum number of initial parameters constant as the total error sought and the number of pulses is carried out. The remaining parameters are optimized to produce the maximum secure key rate. Two main strategies are addressed: with and without two-decoy-states including the optimization of signal to decoy relationship.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum cryptography in communications networks

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current QKD designs try to keep the quantum channel as error free as possible by using a separate physical medium for this purpose. In the most common case, this means the exclusive use of an optical fiber for the quantum channel, precluding its use for any other purpose. In current optical networks, the fiber is the single most expensive element and this poses a major problem from a cost and availability point of view. Sharing the fiber is thus mandatory for the widespread adoption of QKD. The objective of this communication is to propose a general scheme and present some preliminary measurements of a metropolitan area network (MAN) designed to multiplex of the order of 64 addressable quantum channels and the associated QKD classical service signals on a single dark fibre. It uses as much existing components and infraestructure as possible in an attempt to simultaneously lower most of the practical barriers for the adoption of QKD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to deploy QKD in a cost effective and scalable way, its integration with already installed optical networks is a logical step. If, for the sake of security, we require that no intermediate trusted nodes would be needed, the maximum distance/absorptions allowed by QKD systems limit ourselves to metropolitan area networks. Current metro networks are mostly all optical and passive, hence a transparent link can be established among any two points and this link can be used to transport the quantum channel. In this poster we report on our findings studying the problems arising when integrating QKD systems in standard telecommunications networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present here an information reconciliation method and demonstrate for the first time that it can achieve efficiencies close to 0.98. This method is based on the belief propagation decoding of non-binary LDPC codes over finite (Galois) fields. In particular, for convenience and faster decoding we only consider power-of-two Galois fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study how to use quantum key distribution (QKD) in common optical network infrastructures and propose a method to overcome its distance limitations. QKD is the first technology offering information theoretic secret-key distribution that relies only on the fundamental principles of quantum physics. Point-to-point QKD devices have reached a mature industrial state; however, these devices are severely limited in distance, since signals at the quantum level (e.g. single photons) are highly affected by the losses in the communication channel and intermediate devices. To overcome this limitation, intermediate nodes (i.e. repeaters) are used. Both, quantum-regime and trusted, classical, repeaters have been proposed in the QKD literature, but only the latter can be implemented in practice. As a novelty, we propose here a new QKD network model based on the use of not fully trusted intermediate nodes, referred as weakly trusted repeaters. This approach forces the attacker to simultaneously break several paths to get access to the exchanged key, thus improving significantly the security of the network. We formalize the model using network codes and provide real scenarios that allow users to exchange secure keys over metropolitan optical networks using only passive components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is no doubt about the necessity of protecting digital communication: Citizens are entrusting their most confidential and sensitive data to digital processing and communication, and so do governments, corporations, and armed forces. Digital communication networks are also an integral component of many critical infrastructures we are seriously depending on in our daily lives. Transportation services, financial services, energy grids, food production and distribution networks are only a few examples of such infrastructures. Protecting digital communication means protecting confidentiality and integrity by encrypting and authenticating its contents. But most digital communication is not secure today. Nevertheless, some of the most ardent problems could be solved with a more stringent use of current cryptographic technologies. Quite surprisingly, a new cryptographic primitive emerges from the ap-plication of quantum mechanics to information and communication theory: Quantum Key Distribution. QKD is difficult to understand, it is complex, technically challenging, and costly-yet it enables two parties to share a secret key for use in any subsequent cryptographic task, with an unprecedented long-term security. It is disputed, whether technically and economically fea-sible applications can be found. Our vision is, that despite technical difficulty and inherent limitations, Quantum Key Distribution has a great potential and fits well with other cryptographic primitives, enabling the development of highly secure new applications and services. In this thesis we take a structured approach to analyze the practical applicability of QKD and display several use cases of different complexity, for which it can be a technology of choice, either because of its unique forward security features, or because of its practicability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation presents a detailed study in exploring quantum correlations of lights in macroscopic environments. We have explored quantum correlations of single photons, weak coherent states, and polarization-correlated/polarization-entangled photons in macroscopic environments. These included macroscopic mirrors, macroscopic photon number, spatially separated observers, noisy photons source and propagation medium with loss or disturbances. We proposed a measurement scheme for observing quantum correlations and entanglement in the spatial properties of two macroscopic mirrors using single photons spatial compass state. We explored the phase space distribution features of spatial compass states, such as chessboard pattern by using the Wigner function. The displacement and tilt correlations of the two mirrors were manifested through the propensities of the compass states. This technique can be used to extract Einstein-Podolsky-Rosen correlations (EPR) of the two mirrors. We then formulated the discrete-like property of the propensity Pb(m,n), which can be used to explore environmental perturbed quantum jumps of the EPR correlations in phase space. With single photons spatial compass state, the variances in position and momentum are much smaller than standard quantum limit when using a Gaussian TEM00 beam. We observed intrinsic quantum correlations of weak coherent states between two parties through balanced homodyne detection. Our scheme can be used as a supplement to decoy-state BB84 protocol and differential phase-shift QKD protocol. We prepared four types of bipartite correlations ±cos2(θ12) that shared between two parties. We also demonstrated bits correlations between two parties separated by 10 km optical fiber. The bits information will be protected by the large quantum phase fluctuation of weak coherent states, adding another physical layer of security to these protocols for quantum key distribution. Using 10 m of highly nonlinear fiber (HNLF) at 77 K, we observed coincidence to accidental-coincidence ratio of 130±5 for correlated photon-pair and Two-Photon Interference visibility >98% entangled photon-pair. We also verified the non-local behavior of polarization-entangled photon pair by violating Clauser-Horne-Shimony-Holt Bell’s inequality by more than 12 standard deviations. With the HNLF at 300 K (77 K), photon-pair production rate about factor 3(2) higher than a 300 m dispersion-shifted fiber is observed. Then, we studied quantum correlation and interference of photon-pairs; with one photon of the photon-air experiencing multiple scattering in a random medium. We observed that depolarization noise photon in multiple scattering degrading the purity of photon-pair, and the existence of Raman noise photon in a photon-pair source will contribute to the depolarization affect. We found that quantum correlation of polarization-entangled photon-pair is better preserved than polarization-correlated photon-pair as one photon of the photon-pair scattered through a random medium. Our findings showed that high purity polarization-entangled photon-pair is better candidate for long distance quantum key distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Information reconciliation is a crucial procedure in the classical post-processing of quantum key distribution (QKD). Poor reconciliation e?ciency, revealing more information than strictly needed, may compromise the maximum attainable distance, while poor performance of the algorithm limits the practical throughput in a QKD device. Historically, reconciliation has been mainly done using close to minimal information disclosure but heavily interactive procedures, like Cascade, or using less e?cient but also less interactive ?just one message is exchanged? procedures, like the ones based in low-density parity-check (LDPC) codes. The price to pay in the LDPC case is that good e?ciency is only attained for very long codes and in a very narrow range centered around the quantum bit error rate (QBER) that the code was designed to reconcile, thus forcing to have several codes if a broad range of QBER needs to be catered for. Real world implementations of these methods are thus very demanding, either on computational or communication resources or both, to the extent that the last generation of GHz clocked QKD systems are ?nding a bottleneck in the classical part. In order to produce compact, high performance and reliable QKD systems it would be highly desirable to remove these problems. Here we analyse the use of short-length LDPC codes in the information reconciliation context using a low interactivity, blind, protocol that avoids an a priori error rate estimation. We demonstrate that 2×103 bits length LDPC codes are suitable for blind reconciliation. Such codes are of high interest in practice, since they can be used for hardware implementations with very high throughput.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Presentación de resultados sobre la integración de QKD en redes de ópticas telecomunicaciones de área metropolitana.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantum Key Distribution is carving its place among the tools used to secure communications. While a difficult technology, it enjoys benefits that set it apart from the rest, the most prominent is its provable security based on the laws of physics. QKD requires not only the mastering of signals at the quantum level, but also a classical processing to extract a secret-key from them. This postprocessing has been customarily studied in terms of the efficiency, a figure of merit that offers a biased view of the performance of real devices. Here we argue that it is the throughput the significant magnitude in practical QKD, specially in the case of high speed devices, where the differences are more marked, and give some examples contrasting the usual postprocessing schemes with new ones from modern coding theory. A good understanding of its implications is very important for the design of modern QKD devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract—In this paper we explore how recent technologies can improve the security of optical networks. In particular, we study how to use quantum key distribution(QKD) in common optical network infrastructures and propose a method to overcome its distance limitations. QKD is the first technology offering information theoretic secretkey distribution that relies only on the fundamental principles of quantum physics. Point-to-point QKDdevices have reached a mature industrial state; however, these devices are severely limited in distance, since signals at the quantum level (e.g., single photons) are highly affected by the losses in the communication channel and intermediate devices. To overcome this limitation, intermediate nodes (i.e., repeaters) are used. Both quantum-regime and trusted, classical repeaters have been proposed in the QKD literature, but only the latter can be implemented in practice. As a novelty, we propose here a new QKD network model based on the use of not fully trusted intermediate nodes, referred to as weakly trusted repeaters. This approach forces the attacker to simultaneously break several paths to get access to the exchanged key, thus improving significantly the security of the network. We formalize the model using network codes and provide real scenarios that allow users to exchange secure keys over metropolitan optical networks using only passive components. Moreover, the theoretical framework allows one to extend these scenarios not only to accommodate more complex trust constraints, but also to consider robustness and resiliency constraints on the network.