54 resultados para Pyrroles
Resumo:
In the field of conducting polymers, both poly(pyrrole) and poly(thiophene) have been investigated extensively and are used currently in a wide variety of applications including microelectronics, electrode materials, sensors and optoelectronics. Amongst these polymers, 3- and 3,4- substituted poly(pyrroles) and poly(thiophenes) have received significant attention in recent years as demonstrated by the increase in the number of patents and publications that describe their use. This review covers the development in the synthesis of 3- and 3,4- Substituted poly(pyrroles) and poly(thiophenes) over the last 30 years, their polymerisation in addition to describing the material properties and applications of the resulting polymers. In particular, this review focuses upon the variety of methodologies employed for the synthesis of 3- and 3,4-substituted pyrroles and thiophenes as well as upon the broad range of functional groups that can be attached to the heterocyclic ring system in order to tailor the properties of the resulting polymers.
Resumo:
The two-dimensional hybrid organic-inorganic materials Zn-2-Cr and Zn-2-Al-LDHs (Layered Double Hydroxides) containing 4-(1H-pyrrol-1yl)benzoate anions as the interlayer anions were synthesized by the co-precipitation method at constant pH followed by subsequent hydrothermal treatment for 72 h. The materials were characterized by PXRD, C-13 CP-MAS NMR, ESR, TGA, and TEM. The basal spacing found by the X-ray diffraction technique is coincident with the formation of bilayers of the intercalated anions. Solid-state C-13 NMR and ESR data strongly suggest the partial in situ polymerization of the 4-(1H-pyrrol-1yl)benzoate anions during coprecipitation. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We report the synthesis and characterization of organic-inorganic hybrid materials: Zn-2-Al-LDHs (layered double hydroxides) containing 3-(1H-pyrrol-1-yl)-propanoate and 7-(1H-pyrrol-l-yl)-heptanoate as the interlayer anions. The LDHs were synthesized by the co-precipitation method at constant pH followed by hydrothermal treatment for 72 h. The materials were characterized by PXRD, C-13 CP-MAS NMR, TGA, and ESR. The basal spacing found by PXRD technique is coincident with the formation of bilayers of the intercalated anions. The solid state C-13 NMR showed that the interlayered anions remain identical after intercalation. ESR data suggest that the monomers connect each other in a limited number of guests when a thermal treatment is applied. The inorganic LDH sheets delay the temperature of degradation of the monomers. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Indolizines and pyrroles are considered as “privileged” structures since their skeletons were found in many biologically active natural products and they possess a wide range of pharmaceutical properties. Syntheses of these small drug-like molecules are very important in medicinal chemistry. However, most existent methodologies are usually limited to specific substitution patterns or require impractical starting materials or expensive catalysts. Therefore, developing new methodologies for the synthesis of indolizines and pyrroles from commercially available or readily accessible sources is highly desirable.rnIn this PhD thesis, several methods has been described for the synthesis of indolizines and pyrroles. In the first part, indolizines carrying substituents in positions 1-3 were synthesized via a formal [3+2]-cycloaddition of pyridinium ylides and nitroalkenes. Pyridinium salts were prepared by N-alkylation of pyridines with cyanohydrin triflates which could be prepared from corresponding aldehydes via a Strecker reaction followed by O-triflylation. Nitroalkenes were simply prepared from the corresponding aldehydes and nitroalkanes in a nitroaldol condensation. Overall, this modular approach allows to construct the indolizine framework with various substitution patterns starting from a pyridine, two different aldehydes and a nitroalkane. In contrast to reported methods, the produced indolizines do not have to contain an electron-withdrawing group.rnIt has also been found that nitrile-stabilized 2-alkylpyridinium ylides cyclize to unstable 2-aminoindolizines via an intramolecular 5-exo-dig cyclization. Using an in situ acetylation of the amino group, N-protected 2-aminoindolizines could be synthesized. As a less common substitution pattern, indolizines carrying substituents in positions 5–8 were synthesized from enones and 2-(1H-pyrrol-1-yl)nitriles obtained from α-aminonitriles using a modified Paal-Knorr pyrrole synthesis. The decoration of the pyridine unit in the indolizine skeleton has been achieved by a one-pot conjugate addition/cycloaromatization sequence.rnIn the second part of the thesis, the diversity-oriented synthesis of pyrroles from 3,5-diaryl substituted 2H-pyrrole-2-carbonitriles (cyanopyrrolines) obtained in a cyclocondensation of enones with aminoacetonitrile hydrochloride is being discussed. 2,4-Di-, 2,3,5-trisubstituted pyrroles, pyrrole-2-carbonitriles and 2,2’-bipyrroles were synthesized in a one- or two-step protocol. While the microwave-assisted thermal elimination of HCN from cyanopyrrolines gave 2,4-disubstituted pyrroles, DDQ-oxidation of the same intermediates furnished pyrrole-2-carbonitriles. Furthermore, 2,3,5-trisubstituted pyrroles were obtained via a C-2-alkylation of the deprotonated cyanopyrrolines followed by the elimination of HCN. Finally, it has also been found that tetraaryl substituted 2,2’-bipyrroles could be synthesized by the oxidative dimerization of cyanopyrrolines using copper (II) acetate at 100 °C.rn
Resumo:
Doubly charged ion mass spectra of alkyl-substituted furans and pyrroles were obtained using a double-focusing magnetic mass spectrometer operated at 3.2 kV accelerating voltage. Molecular ions were the dominant species found in doubly charged spectra of lower molecular weight heterocydic compounds, whereas the spectra of the higher weight homologues were typified by abundant fragment ions from extensive decomposition. Measured doubly charged ionization and appearance energies ranged from 22.8 to 47.9 eV. Ionization energies were correlated with values calculated using self-consistent field–molecular orbital techniques. A multichannel diabatic curve-crossing model was developed to investigate the fundamental organic ion reactions responsible for development of doubly charged ion mass spectra. Probabilities for Landau–Zener type transitions between reactant and product curves were determined and used in the collision model to predict charge-transfer cross-sections, which compared favorably with experimental cross-sections obtained using time-of-flight techniques.
Resumo:
A novel DBU-promoted ring transformation of substituted isoxazoles to substituted pyrroles is described
Resumo:
A diketopyrrolopyrrole (DPP) with fluorenone (FN) based low band gap alternating copolymer (PDPPT-alt-FN) has been synthesized via Suzuki coupling. PDPPT-alt-FN exhibits a deep HOMO level with a lower band gap. Fabricated organic thin film transistors using PDPPT-alt-FN as a channel semiconductor show p-channel behaviour with the highest hole mobility of 0.083 cm2 V-1 s-1 measured in air.
Resumo:
A new, solution-processable, low-bandgap, diketopyrrolopyrrole- benzothiadiazole-based, donor-acceptor polymer semiconductor (PDPP-TBT) is reported. This polymer exhibits ambipolar charge transport when used as a single component active semiconductor in OTFTs with balanced hole and electron mobilities of 0.35 cm2 V-1s-1 and 0.40 cm 2 V-1s-1, respectively. This polymer has the potential for ambipolar transistor-based complementary circuits in printed electronics.
Resumo:
We have developed a totally new class of nonporphyrin photodynamic therapeutic agents with a specific focus on two lead candidates azadipyrromethene (ADPM)01 and ADPM06. Confocal laser scanning microscopy imaging showed that these compounds are exclusively localised to the cytosolic compartment, with specific accumulation in the endoplasmic reticulum and to a lesser extent in the mitochondria. Light-induced toxicity assays, carried out over a broad range of human tumour cell lines, displayed EC50 values in the micro-molar range for ADPM01 and nano-molar range for ADPM06, with no discernable activity bias for a specific cell type. Strikingly, the more active agent, ADPM06, even retained significant activity under hypoxic conditions. Both photosensitisers showed low to nondeterminable dark toxicity. Flow cytometric analysis revealed that ADPM01 and ADPM06 were highly effective at inducing apoptosis as a mode of cell death. The photophysical and biological characteristics of these PDT agents suggest that they have potential for the development of new anticancer therapeutics. © 2005 Cancer Research UK.
Resumo:
Photodynamic therapy (PDT) is an emerging treatment modality for a range of disease classes, both cancerous and noncancerous. This has brought about an active pursuit of new PDT agents that can be optimized for the unique set of photophysical characteristics that are required for a successful clinical agent. We now describe a totally new class of PDT agent, the BF2-chelated 3,5-diaryl-1H-pyrrol-2-yl-3,5-diarylpyrrol-2-ylideneamines (tetraarylazadipyrromethenes). Optimized synthetic procedures have been developed to facilitate the generation of an array of specifically substituted derivatives to demonstrate how control of key therapeutic parameters such as wavelength of maximum absorbance and singlet-oxygen generation can be achieved. Photosensitizer absorption maxima can be varied within the body's therapeutic window between 650 and 700 nm, with high extinction coefficients ranging from 75,000 to 85,000 M(-1) cm(-1). Photosensitizer singlet-oxygen generation level was modulated by the exploitation of the heavy-atom effect. An array of photosensitizers with and without bromine atom substituents gave rise to a series of compounds with varying singlet-oxygen generation profiles. X-ray structural evidence indicates that the substitution of the bromine atoms has not caused a planarity distortion of the photosensitizer. Comparative singlet-oxygen production levels of each photosensitizer versus two standards demonstrated a modulating effect on singlet-oxygen generation depending upon substituent patterns about the photosensitizer. Confocal laser scanning microscopy imaging of 18a in HeLa cervical carcinoma cells proved that the photosensitizer was exclusively localized to the cellular cytoplasm. In vitro light-induced toxicity assays in HeLa cervical carcinoma and MRC5-SV40 transformed fibroblast cancer cell lines confirmed that the heavy-atom effect is viable in a live cellular system and that it can be exploited to modulate assay efficacy. Direct comparison of the efficacy of the photosensitizers 18b and 19b, which only differ in molecular structure by the presence of two bromine atoms, illustrated an increase in efficacy of more than a 1000-fold in both cell lines. All photosensitizers have very low to nondeterminable dark toxicity in our assay system.
Resumo:
DNA recognition is an essential biological process responsible for the regulation of cellular functions including protein synthesis and cell division and is implicated in the mechanism of action of some anticancer drugs. Studies directed towards defining the elements responsible for sequence specific DNA recognition through the study of the interactions of synthetic organic ligands with DNA are described.
DNA recognition by poly-N-methylpyrrolecarboxamides was studied by the synthesis and characterization of a series of molecules where the number of contiguous N-methylpyrrolecarboxamide units was increased from 2 to 9. The effect of this incremental change in structure on DNA recognition has been investigated at base pair resolution using affinity cleaving and MPE•Fe(II) footprinting techniques. These studies led to a quantitative relationship between the number of amides in the molecule and the DNA binding site size. This relationship is called the n + 1 rule and it states that a poly-N methylpyrrolecarboxamide molecule with n amides will bind n + 1 base pairs of DNA. This rule is consistent with a model where the carboxamides of these compounds form three center bridging hydrogen bonds between adjacent base pairs on opposite strands of the helix. The poly-N methylpyrrolecarboxamide recognition element was found to preferentially bind poly dA•poly dT stretches; however, both binding site selection and orientation were found to be affected by flanking sequences. Cleavage of large DNA is also described.
One approach towards the design of molecules that bind large sequences of double helical DNA sequence specifically is to couple DNA binding subunits of similar or diverse base pair specificity. Bis-EDTA-distamycin-fumaramide (BEDF) is an octaamide dimer of two tri-N methylpyrrolecarboxamide subunits linked by fumaramide. DNA recognition by BEDF was compared to P7E, an octaamide molecule containing seven consecutive pyrroles. These two compounds were found to recognize the same sites on pBR322 with approximately the same affinities demonstrating that fumaramide is an effective linking element for Nmethylpyrrolecarboxamide recognition subunits. Further studies involved the synthesis and characterization of a trimer of tetra-N-methylpyrrolecarboxamide subunits linked by β-alanine ((P4)_(3)E). This trimerization produced a molecule which is capable of recognizing 16 base pairs of A•T DNA, more than a turn and a half of the DNA helix.
DNA footprinting is a powerful direct method for determining the binding sites of proteins and small molecules on heterogeneous DNA. It was found that attachment of EDTA•Fe(II) to spermine creates a molecule, SE•Fe(II), which binds and cleaves DNA sequence neutrally. This lack of specificity provides evidence that at the nucleotide level polyamines recognize heterogeneous DNA independent of sequence and allows SE•Fe(II) to be used as a footprinting reagent. SE•Fe(II) was compared with two other small molecule footprinting reagents, EDTA•Fe(II) and MPE•Fe(II).
Resumo:
Mixtures of glycine, glucose, and starch were extrusion cooked using sodium hydroxide at 0, 3, and 6 g/L of extruder water feed, 18% moisture, and 120, 150, and 180 degreesC target die temperatures, giving extrudates with pH values of 5.6, 6.8, and 7.4. Freeze-dried equimolar solutions of glucose and glycine were heated either dry or after equilibration to similar to 13% moisture at 180 degreesC in a reaction-tube system designed to mimic the heating profile in an extruder. Volatile compounds were isolated onto Tenax and analyzed by gas chromatography-mass spectrometry. For the extrudates, total yields of volatiles increased with decreasing pH at 180 degreesC, reached a maximum at pH 6.S at 150 degreesC, and increased with increasing pH at 120 degreesC. Amounts increased with temperature at all pH values. Pyrazines were the most abundant class for all sets of conditions (54-79% of total volatiles). Pyrroles, ketones, furans, oxazoles, and pyridines were also identified. Yields of volatiles from the reaction-tube samples increased by > 60% in the moist system. Levels of individual classes also increased in the presence of moisture, except pyrazines, which decreased similar to3.5-fold. Twenty-one of the compounds were common to the reaction-tube samples and the extrudates.