891 resultados para Pyroxene.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bruneau–Jarbidge eruptive center of the central Snake River Plain in southern Idaho, USA produced multiple rhyolite lava flows with volumes of <10 km³ to 200 km³ each from ~11.2 to 8.1 Ma, most of which follow its climactic phase of large-volume explosive volcanism, represented by the Cougar Point Tuff, from 12.7 to 10.5 Ma. These lavas represent the waning stages of silicic volcanism at a major eruptive center of the Yellowstone hotspot track. Here we provide pyroxene compositions and thermometry results from several lavas that demonstrate that the demise of the silicic volcanic system was characterized by sustained, high pre-eruptive magma temperatures (mostly ≥950 °C) prior to the onset of exclusively basaltic volcanism at the eruptive center. Pyroxenes display a variety of textures in single samples, including solitary euhedral crystals as well as glomerocrysts, crystal clots and annealed microgranular inclusions of pyroxene ±magnetite± plagioclase. Pigeonite and augite crystals are unzoned, and there are no detectable differences in major and minor element compositions according to textural variety — mineral compositions in the microgranular inclusions and crystal clots are identical to those of phenocrysts in the host lavas. In contrast to members of the preceding Cougar Point Tuff that host polymodal glass and mineral populations, pyroxene compositions in each of the lavas are characterized by single rather than multiple discrete compositional modes. Collectively, the lavas reproduce and extend the range of Fe–Mg pyroxene compositional modes observed in the Cougar Point Tuff to more Mg-rich varieties. The compositionally homogeneous populations of pyroxene in each of the lavas, as well as the lack of core-to-rim zonation in individual crystals suggest that individual eruptions each were fed by compositionally homogeneous magma reservoirs, and similarities with the Cougar Point Tuff suggest consanguinity of such reservoirs to those that supplied the polymodal Cougar Point Tuff. Pyroxene thermometry results obtained using QUILF equilibria yield pre-eruptive magma temperatures of 905 to 980 °C, and individual modes consistently record higher Ca content and higher temperatures than pyroxenes with equivalent Fe–Mg ratios in the preceding Cougar Point Tuff. As is the case with the Cougar Point Tuff, evidence for up-temperature zonation within single crystals that would be consistent with recycling of sub- or near-solidus material from antecedent magma reservoirs by rapid reheating is extremely rare. Also, the absence of intra-crystal zonation, particularly at crystal rims, is not easily reconciled with cannibalization of caldera fill that subsided into pre-eruptive reservoirs. The textural, compositional and thermometric results rather are consistent with minor re-equilibration to higher temperatures of the unerupted crystalline residue from the explosive phase of volcanism, or perhaps with newly generated magmas from source materials very similar to those for the Cougar Point Tuff. Collectively, the data suggest that most of the pyroxene compositional diversity that is represented by the tuffs and lavas was produced early in the history of the eruptive center and that compositions across this range were preserved or duplicated through much of its lifetime. Mineral compositions and thermometry of the multiple lavas suggest that unerupted magmas residual to the explosive phase of volcanism may have been stored at sustained, high temperatures subsequent to the explosive phase of volcanism. If so, such persistent high temperatures and large eruptive magma volumes likewise require an abundant and persistent supply of basalt magmas to the lower and/or mid-crust, consistent with the tectonic setting of a continental hotspot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Lhasa terrane, located between the Bangonghu-Nujiang suture zone and the Indus-Yalung Tsangpo suture zone in the southern Tibetan Plateau, was considered previously as a Precambrian continental block. Mesozoic and Cenozoic tectonic evolution of the Lhasa terrane is closely related to the subduction of the Tethys ocean and the collision between the Indian and European continents; so it is one of the keys to reveal the formation and evolution of the Tibetan plateau. The garnet two-pyroxene granulite which was found at the Nyingtri rock group of the southeastern Lhasa terrene consists of garnet, clinopyroxene, orthopyroxene, labradorite, Ti-rich amphibolite and biotite, with a chemical composition of mafic rock. The metamorphic conditions were estimated to be at T = 747 similar to 834 degrees C and P = 0.90 similar to 1.35GPa, suggesting a formation depth of 45km. The zircon U-Pb dating for the garnet amphibolite and marble associated with the granulite give a metamorphic age of 85 similar to 90Ma. This granulite-facies metamorphic event together with a contemporaneous magmatism demonstrated that the southern Lhasa terrane has undergone an Andean-type orogeny at Late Mesozoic time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent sediments with distinct signs of hydrothermal alteration sampled in the Hess Deep(Galapagos Ridge, East Pacific Rise) contained a piece of ash-gray rock, which differed from other rock fragments by degree of consolidation, conchoidal fracture, and had properties of asbestos. Our studies found that the sample represented mixture of asbestos-like pyroxene of diopside-hedenbergite composition, amphibole of tremolite composition and a new mineral, which basic structure consisted of bands of triple pyroxene chains with the radical [Si6O16]. The latter can be regarded as intermediate between amphiboles and layered silicates. Also in some parts of the sample presence of trioctahedral vermiculite-chlorite was indicated. Genesis of the studied asbestos rock is considered from the standpoint of high-temperature hydrothermal-metasomatic alteration of sediment by post-magmatic mineralized halide solutions.